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Engineered T cells have emerged as highly effective treatments for hematological cancers. Hundreds
of clinical programs are underway in efforts to expand the efficacy, safety, and applications of this
immuno-therapeuticmodality. Aprimary challenge in developing these “living drugs” is the complexity
of their pharmacology, as the drug product proliferates, differentiates, traffics between tissues, and
evolves through interactions with patient immune systems. Using publicly available clinical data from
Chimeric Antigen Receptor (CAR) T cells, we demonstrate how mathematical models can be used to
quantify the relationships between product characteristics, patient physiology, pharmacokinetics and
clinical outcomes. As scientists work to develop next-generation cell therapy products, mathematical
models will be integral for contextualizing data and facilitating the translation of product designs to
clinical strategy.

Genetically engineered T cells have proven highly efficacious in treating B cell
malignancies, generating durable tumor responses and even cures with a
single dose. Six chimeric antigen receptor T cell (CAR-T) therapies have been
approved by the FDA since 2017, targeting either CD19 or BCellMaturation
Antigen (BCMA). Efficacy varies by indication and product, but complete
response rates typically exceed 50% and extend beyond a year1. This is
remarkable for treatment-refractory cancers and for patients who have pro-
gressed on multiple lines of chemotherapy. These results have galvanized the
field, and hundreds of CAR- andTCR-engineered T-cell therapies are now in
clinical development for the treatment of a range of cancers and immune
disorders2. The ability to engineer and deliver targeted cellular immunity
offers the potential to tackle diseases with limited treatment options3.

Currently, all approvedCAR-T products are autologous (derived from
patient blood draws), though allogeneic (healthy donor- or stem cell-
derived) products are in clinical development. T cells are isolated from a
patient’s blood, modified using lentiviral vectors or other synthetic biology
approaches, expanded using cytokine cocktails andCD3-stimultion ex vivo,
then infused back into patients. While effective, these ‘living drugs’ make
unruly therapeutics. The infusedT cell compositions actively traffic between
tissues, proliferate, differentiate, and interact with patient immune systems
in complex and poorly understood ways. If engineered T cells are to fulfill
their promise as a groundbreaking therapeutic platform, it is critical to
understand their unique pharmacology, and further leverage this under-
standing to improve product design, treatment regimens, and clinical
outcomes.

Developing a novel therapeutic agent from discovery through pre-
clinical and clinical stages requires a quantitative understanding ofwhat the
body does to the drug (pharmacokinetics) andwhat the drug does to the body
(pharmacodynamics). This involves the use of mathematical and statistical
models to characterize absorption, distribution, routes of elimination, and
the relationship between drug exposure and pharmacological activity.
Pharmacokinetic-Pharmacodynamic (PKPD) modelling principles were
first introduced in the “age of small molecules”4. The original mathematical
models were highly empirical; they described the pharmacokinetics and
exposure-response relationships in patient populations without regard for
underlying biological mechanisms. These principles were translated to
antibody therapeutics as they emerged in the 1980s, and now to the bur-
geoning varieties of engineered biotherapeutics5. As therapeutic agents have
becomemore complex, themodelling approaches used to characterize their
behavior have as well. State-of-the art methodologies now incorporate
mechanistically detailed descriptions of ligand-receptor interactions
(mechanistic-PKPD)6, the physicochemistry and physiology affecting
exposure and tissue distribution (physiologically-based PK)7, and the cel-
lular biochemistrymediating efficacyand toxicity (systemspharmacology)8.

Althoughmodel-informeddrug development has beenwidely adopted
by both industry and regulatory bodies9, integration of these quantitative
methods into the nascent CAR-T field has been sporadic. While the
underlying biology of T-cell therapies may be complex, we believe the
insights frommathematical model-based analyses can facilitate cell therapy
research and clinical development.
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While there are hundreds of review articles detailing the molecular
biology of T cells and advances in chimeric antigen receptor T cell (CAR-T)
engineering and clinical data (e.g.1–3), there are only a limited number of
articles highlighting mathematical approaches which have been employed
to describe the pharmacology of CAR-Ts10–14. The latter are technical pieces
written for pharmacometricians rather than biologists or clinicians, and do
not tangibly relate fundamental concepts in quantitative pharmacology
(bioavailability, distribution, and clearance) to emerging clinical data, nor
how CAR-T product design and patient physiology can modulate key
pharmacological parameters. Herein, we take a novel approach to connect
these concepts, using simulations of published mathematical models for
demonstrative purposes.

We first outline the principles of pharmacology, their application to
adoptive T-cell therapy, and the fundamental challenges faced in clinical
development of these agents. We then use model simulations to study the
effects of cellular heterogeneity and product-intrinsic variance, biodis-
tribution, lymphodepletion response, and allogeneic elimination onCAR-T
pharmacokinetics. Finally, we provide perspectives on how data from
in vitro functional assays can be integratedwithCRISPR-screens and single-
cell sequencing to inform clinical development.

Results & Discussion
Principles of pharmacology: Pharmacokinetics and
Pharmacodynamics
Pharmacokinetic (PK) curves describe the time-course of drug concentra-
tion following administration (Fig. 1A). There are a few key exposure
metrics used to quantify these time courses. The maximal concentration
reached following administration (Cmax), the time at which this occurs
(tmax), and the area under the concentration-time curve (AUC). These
parameters depend upon the dose, bioavailability of the compound, and
physiological mechanisms mediating distribution and elimination.

Pharmacodynamics (PD) describes the onset, intensity, and duration of a
drug response (efficacious or adverse) and how it relates to the concentra-
tion of the drug at the site of action.

Exposure-response (ER) analyses (or pharmacokinetic-
pharmacodynamic [PKPD] modeling) are used to relate metrics of drug
exposure (e.g., concentration or AUC) to measures of both efficacy and
toxicity (Fig. 1B). The variance in exposure necessary to build this rela-
tionship can be achieved either from dose-ranging studies and/or by uti-
lizing the observed variability in pharmacokinetic parameters across a
patient population. Thewindowbetween efficacy vs. toxicity is referred to as
the therapeutic index and can be quantified by examining the estimated
EC50 values. Ideally, one would like to have as wide a therapeutic index as
possible.However, what is consideredacceptable depends on the indication.
For example, a much narrower therapeutic index would be acceptable for a
cancer treatment compared to over-the-counter pain relief.

As a drug advances through development, our understanding of the
pharmacokinetics, exposure-response relationships, and relevant covariates
(patient and disease characteristics) evolves. The end goal of PKPD mod-
elling is typically to design an optimal dosing regimen which maximizes
efficacy while minimizing toxicity across the target population (Fig. 1C). So
how do these foundational principles apply to CAR-T cell therapies?

Pharmacology of T cell therapy
The pharmacokinetics of adoptive T cells can be evaluated by blood sam-
pling, either via flow cytometry or PCR-based detection of the CAR
transgene. Experience to date with CAR-Ts has shown the behavior, often
referred to as cellular kinetics, can be segregated into four phases (Fig. 1D).

The first is biodistribution. Following infusion, administered T cells
rapidly disappear from circulation, and blood concentration will drop by
orders of magnitude within a few days15. The kinetics of this process are
poorly characterized, as the dense time sampling required over the first few
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Fig. 1 | Pharmacology and living drugs. Pharmacokinetic plots (A) represent drug
concentration over time following administration. Cmax (maximal concentration),
tmax, and AUC (concentration-time integral) are used to quantify these curves
across populations. Exposure-response analyses (B) links drug exposure (e.g.,Cmax
or AUC) to drug efficacy and toxicity readouts, typically quantified using Hill-type
equations. Separation of the efficacy and toxicity curves is referred to as the ther-
apeutic index (TI). PKPD model simulations (C) are used to optimize dosing regi-
mens (dose and schedule) which maximize efficacy while minimizing toxicity (each

colored line represents a different dose). CAR-T pharmacokinetics (D) can be
subdivided into four phases. Immediately following administration is a biodis-
tribution phase, where circulating cell counts rapidly decline, typically to below the
limit of quantification. This is followed by an expansion phase, where CAR-Ts
proliferate for approximately 2 weeks up to a maximal expansion (Cmax), followed
by a period of rapid contraction and then persistence (slow clearance). E The
empirical population PK model of Kymriah simulated for 1000 virtual patients and
represented via percentiles of inter-individual variability (IIV).
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hours following administration is rarely performed or reported. Likely the
cells actively traffic from circulation into tissues, but the interplay between
the cell characteristics, target and anatomic pathology, and the clinical
implications remain unknown. Notably, the same phenomenon has been
observed for other T cell activating therapies such as IL1516 and CD3-
bispecific engagers17. The biodistribution phase thus appears to be a feature
of T cell activation rather than specific to CAR-T dosing.

The subsequentphases are expansion, followedby contraction and then
persistence. Cell numbers in the blood rapidly expand for approximately two
weeks as the cells encounter antigen and proliferate. After reaching Cmax,
circulating cell numbers begin to rapidly contract. As antigen is cleared,
active effector T cells either die or convert to long-term memory T cells18.
This rapid contraction phase precedes a period of long-term persistence or
gradual decline, which can last a decade ormore19.While comprising only a
small fraction of circulating T cells (<0.5%), long-term persistent CAR-T
cells acquire a distinct phenotype and transcriptional features indicative of
antigen stimulation, driven by CD19/BCMA-expression on both healthy
and cancerous B cells. Presumably, this population responds to remanent
tumor cells as they arise thereby maintaining durable responses20.

While the biology underlying these phases may be unclear, empirical
mathematical models have been used to quantify the cellular kinetics of
CAR-Ts fromclinical andpre-clinical studies10. Thefirst CAR-Tpopulation
pharmacokinetic model was developed by Novartis21 and included in the
Biologics License Application (BLA) for the CD19-targeted CAR-T Kym-
riah (tisagenlecleucel)22. It is empirical in that themodel describes the typical
shape of the curves using six parameters, without specifying mechanisms
mediating the kinetic phase transitions. Both the population average and
variance for each parameter are estimated, thereby converting the phar-
macokinetic data into a vector of 12 numbers (see Fig. 1E). The equations
and parameter estimates then serve as a computational representation by
which new data can be benchmarked and are used for this purpose by FDA
reviewers23.

Drug development challenges emanating from CAR-T
pharmacology
Narrow Therapeutic Index. Exposure-response analyses for multiple
CAR-Ts in different indications reveal that both AUC and Cmax are

predictive of response and toxicity (primarily cytokine release syndrome
[CRS]). Patients that fall on the high end of pharmacokinetic exposure
are likely to have robust tumor shrinkage, but also experience grade 3/4
CRS with little to no therapeutic index (e.g., the dose vs. response and
CRS curves overlap for Abecma, a BCMA-targeted CAR-T approved for
the treatment ofmultiplemyeloma; Fig. 2A). This tight correlation points
to important biology – the same mechanisms underlying efficacy also
mediate toxicity. Activation of circulating T cells and systemic produc-
tion of inflammatory cytokines is required for tumor clearance, but these
processes also cause CRS. Dose fractionation may be an approach to
separate CRS from efficacy, as fractionation has been an effective strategy
tomanage similar toxicities encounteredwith bispecific T-cell engagers24.
Preliminary data from a small number of clinical CAR-T trials seem to
support this idea25.

High interpatient variability. Inter-patient variability in exposure (both
Cmax and AUC) is much wider for CAR-Ts than small molecules or
biologics. “Highly variable drugs” are defined by the FDA as those for
which inter-subject variance (%CV) in exposure is greater than 30%26.
Highly variable drugs are usually considered an exception and proble-
matic for both developers and regulators. For approved CAR-Ts, PK
variance typically spans three orders ofmagnitude (Fig. 1E), whichwould
terminate a typical drug program. In addition, for small molecules or
biologics, drug developers hope to see a clear and consistent relationship
(e.g., doubling the dose should correspondingly double the exposure).
For CAR-Ts this relationship is often obscured by the high inter-patient
variability (Fig. 2B). In other words, inter-patient variance in exposure
typically exceeds the range of dose-dependent effect sizes, necessitating
manymore patients than are typically enrolled in an early clinical study to
detect a statistically significant relationship. Exposure is primarily driven
by variance inmaximal cell expansion (Cmax) rather than dose (Fig. 2C).
This result is not surprising since CAR-T expansion is antigen-
dependent27,28 and is corroborated by clinical observations29. Given the
weak correlation between dose and exposure, CAR-T therapies cannot be
dose-optimized as expected for other therapeutic modalities30. Thus,
exposure-response analyses are useful for retrospective analyses but have
little use in prospective decision making.

Fig. 2 | Drug development challenges emanating
from CAR-T pharmacology. A The exposure-
response model reported for Abecma (a BCMA-
targeted CAR-T) simulated using reported para-
meters for efficacy (response rate) and toxicity
(Cytokine release syndrome requiring anti-IL6
tocilizumab or steroids) as functions of 28-dayAUC.
B Distribution of 28-day AUC from Kymriah
population simulations over a two-order magnitude
dose-range. IIV represented for 95, 80 and 50 per-
centiles as in Fig. 1E. C Correlation between Cmax
and AUC from the Kymriah dose range simulations
in B.D Simulations over a 10-fold range of maximal
cell expansion (Cmax) effect size vs. a 10-fold range
in log-variance were performed. At each point in the
grid, minimum sample size (minimum N) require-
ments for detecting a statistical difference in 28-day
log-AUC as compared to control were computed
(two sample t-test, p < 0.05 and 80% power).
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Insights into the sources of this variance can be gleaned from data as
well as theory. In contrast to clinical studies, dose-exposure relationships for
CAR Ts are often observed in pre-clinical in vivo studies31. These experi-
ments are typically performed with a single batch of starting material and
use genetically homogenous mice with uniform tumor xenografts. That is,
pre-clinical studies actively minimize variability in both starting material
and ‘patient’ populations. Systematic meta-analyses of clinical endpoints
has revealed that BCMA-targeted products have less variance and a tighter
dose-exposure relationships than CD19-targeted products32. These obser-
vations indicate that some of the pharmacokinetic variance may be attri-
butable to differences in cancer biology, tumor burden and antigen
expression patterns, while the remaining may be attributable to differences
inT cell startingmaterial, CAR constructs, or other complex, poorly defined
physiological variables.

The wide variability in exposure creates significant challenges for
clinical development. Consider the recent FDA guidance on implementa-
tion of ‘umbrella trials’ for cell therapy products33. Umbrella designs enable
the testing ofmultiple product iterations under a single,multi-arm trial with
a single master-protocol and Investigational New Drug (IND) submission.
Under this framework, cell therapy developers could test alternate product
designs (gene editing strategies, CAR variants, manufacturing protocols,
etc.) head-to-head in a clinical setting.However, success is contingent on the
ability tomake relatively rapid decisions on the clinical benefit of alternative
treatment arms, which in turn depends on the treatment effect size relative
to the population variance. Observing a statistically significant treatment
effect will be challenging for CAR-T products that exhibit large variance. To
demonstrate this, we implemented simulations of the Kymriah population
pharmacokinetic model as a benchmark CAR-T. Specifically, we used this
model to assess how many patients per arm are necessary to detect a sta-
tistical difference in tumor response, using simulated exposures (AUC-28)
as a surrogate (Fig. 2D). With 10 patients included in each arm of the trial
and the same PK variance as Kymriah, observing a statistically significant
effect of an alternate product designwould require a 500% effect size (5-fold
increase compared to control). Such large effect sizes seem unlikely under
the guise of an umbrella trial. A more reasonable 200% effect size would
necessitate 40 patients per treatment arm. However, if the PK variance was
substantially reduced, the required number of enrolled patients would be
much lower. Considering that pivotal clinical trials costs upward of $40,000
USD per patient34, and would be substantially higher for early cell therapy
studies.ReducingPKvariability is thus apre-requisite formakingmulti-arm
umbrella trials and iterative clinical development both practically feasible
and financially viable for CAR-T therapies.

Predictive biomarkers of CAR-T product quality and clinical
outcomes
Both Cmax35 and immunophenotype of circulating CAR-Ts following
expansion are predictive of patient response. That is, patients with robust
and durable tumor responses are more likely to have PK profiles in the top
quartile of the distribution (Figs. 1E and 2A), and circulating CAR-Ts
comprised of larger proportions of effector rather than exhausted and
regulatory T cells36–38. While a predictive model of response based on an
early clinical readout (e.g., a two-week blood draw) could be informative for
subsequent patient care, it would be much more valuable to accurately
predict outcomes and modify the treatment regimen before initiation
(ideally prior to lymphodepletion). Current release criteria for CAR-T
products are CD4/CD8 expression, CAR expression, cell viability and cell
number. However, none of these metrics are predictive of clinical
outcomes39–41 and there are anecdotal reports of CAR-T products which
failed release testing yet yielded robust and durable responses42. Therefore,
quantitative, robust metrics relating pre-infusion product characteristics
(e.g., T cell subpopulation phenotyping, cytokine-release assays, tran-
scriptome profiles) to clinical outcomes are needed for both batch release
criteria and for process optimization studies.

The frequency of memory vs. exhausted T cell sub-populations has
been correlated with response in multiple clinical studies43,44. However, the

specific markers and flow cytometry gating strategies used to evaluate this
are inconsistent and the phenotype-response correlations are generally low.
The correlations thus do not robustly translate between clinical studies with
differing patient populations and CAR-T manufacturing strategies45. In
vitro cytokine-release assays have also been shown to correlate with
response46, albeit with limited study sizes and highly inconsistentmetrics. A
series of publications have reported transcriptome profiles of pre-infusion
CAR-T products matched with clinical outcomes38,47,48. In theory, these
types of datasets are amenable to unbiased, machine learning approaches to
identify predictive biomarkers of response. Yet, they are limited by the “large
P, small N problem”. The sample numbers (N < 30) are too small for
unbiased statistical models to extract predictive features from the large
numberofmeasurements (P ~ 20,000genes). Intelligent feature engineering
strategies are thus required to pre-process the data. Gene set enrichment
analyses, for example, have identified transcriptome signatures correlated
with response from such studies; signatures for memory, exhausted, and
NKT-cells, as well as inflammatory signaling48. These are however corre-
lations observed in single studies, rather than predictive models. By com-
bining multiple transcriptome datasets, we were able to train a machine
learning classifierusing a panel of 28 gene signatures that is highly predictive
of response in different indications45. Clinical outcomes thus emanate in
part from characteristics of the infused cell population, and these attributes,
to varying extents, were shared between clinical studies, diseases, and CAR-
T products. As publicly available transcriptome data accumulates (e.g.49),
individual studies canbe combined for integratedanalysis and refinementof
predictive classifiers.

Using mathematical models to extract product- and patient-
intrinsic factors impacting CAR-T pharmacology and clinical
outcomes
Memory cell proliferative capacity and product-intrinsic variance.
Despite the extensive literature on mathematical models of T cell-tumor
interactions50, only a few mechanism-based models have been trained
using clinical CAR-T PKPD data51,52. Parameterizing such models with
data from responders and non-responders can identify explanatory
variables underlying response and grounded in established biology.
Using data from a study of Kymriah in chronic lymphocytic leukemia
(CLL)44 and a mechanism-based model of CAR-T cell-tumor antigen
interactions, we found the turnover rate of memory cell sub-populations
in the CAR-T product to be a key differentiator of response, while
memory cell frequency in the infused product was not45. This finding was
confirmed using single cell transcriptomes from a handful of unrelated
clinical studies; CAR-T products resulting in poor clinical response
contained memory sub-populations with transcriptional features of
functional exhaustion, despite similar immunophenotypes. A sub-
sequent paper reached concordant conclusions i.e. cell-intrinsic func-
tional measures (proliferative capacity and cytotoxic potency) rather
than immunophenotypes underly differences in response53. Prospective
simulations of the model reveal memory cell proliferation rate as a suf-
ficient explanatory variable underlying exposure and response (Fig. 3).

Together, these results suggest thatwe could improve clinical outcomes
if we could design CAR-T products containing memory cells with robust
proliferative capacity. However, there are a few hinderances to doing so.
First, proliferative capacity may be intrinsic to the patient-derived starting
material. That is, autologousT cellsmay be of variable quality, which in turn
determines quality of the resulting CAR-T product. Evidence for this lies in
reports that healthy donor-derived T cells make more functionally active
CAR-Ts with less batch-to-batch variability54,55, and the proliferation rate
observed during the ex vivo expansion phase ofmanufacturing is predictive
of clinical response40.Differences inTcell quality betweendisease statesmay
additionally contribute to differences in clinical activity of expanded auto-
logous products. For example, T cells from CLL patients appear more
functionally exhausted compared to other lymphomas56, and response rates
to the derivative CAR-Ts are correspondingly lower. Second, there are no
established protocols for consistently generating proliferative memory cells
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in culture. Although, shorter duration cultures with supportive cytokine
cocktails seems to at least preservememory cell function, improving clinical
expansion, persistence, and activity57,58. Ultimately, the definition of
product-intrinsic vs. patient-intrinsic is somewhat circular for autologous
cell therapies. Patients from whom better CAR-T products are derived
(enriched with highly proliferative memory cells) may have systemic
cytokines or immune microenvironments supportive of such cells. The
relative importance of cell- vs. patient-intrinsic variables are thus con-
founded, as the pharmacology depends on communication between the
(patient-derived) product composition and patient physiology.

T cell biodistribution effects on CAR-T pharmacology. Although
small molecules and biologics distribute throughout tissues following
administration, blood is typically a reasonable surrogate of tissue con-
centration. However, this may not be the case for T cell therapies.

Comparison of infused cell numbers vs. circulating CAR-T cell counts
reveals the majority of cells infused are not present in the blood at first
measurement (typically taken one to a few days after dosing). To directly
compare between studies, we present a simplemetric, termed theExpansion
Ratio (Cmax × Blood Volume/Cell dose), and report this for select clinical
and preclinical studies (Table 1). The Expansion Ratio estimates howmany
cells appear in circulation at the peak concentration per cell dosed. For
preclinical studies this value is less than 1/100 and for clinical trials,
expansion ratios >1/10 seem to be a prerequisite for tumor response. Thus,
even in responderswith ahighCmax andmulti-log expansion, circulatingT
cell counts typically just approach input cell numbers.

A T cell biodistribution study performed in mice using unmodified,
radio-labelled T cells found most of the infused cells rapidly accumulate in
the lungs, spleen, liver, kidneys, and lymph nodes59. Quantification of tissue
vs. blood exposure revealed that for every cell detected in the blood,
approximately 1000 are tissue-resident. A similar patternwas observedwith
CD19-CAR-Ts, with particularly rapid accumulation in lungs within the
first day of infusion60. It is perhaps not surprising that lung vasculature
would be a physical bottleneck, and imaging studies have noted largemulti-
cellular aggregates of CAR-Ts and B cells trapped in the lung vascular
network within 15minutes after dosing61. While human biodistribution
data is not available, PBPK modelling predicts lung vasculature as the pri-
mary sink, accounting for >99% of administered T cells62.

We explored the theoretical implications of this phenomenon using a
minimal adaptation of ourmechanisticCAR-TPKPDmodel45. By inclusion
of a ‘tissue’ compartment into which administered cells redistribute, PK
profiles were simulated over a range of scenarios (Fig. 4). Rapid tissue
biodistribution due to extravasation (trafficking of T cells from circulation
into surrounding tissues) and the degree of cell ‘stickiness’ (tissue extra-
vasationvs. re-circulation rates) canhave adominant effect on exposure.For
example, we can simulate a hypothetically effective CAR-T with robust
expansion and Cmax, yet create an ineffective therapy that barely breaches
the lower limit of quantification (LLQ) in circulation by simply increasing
the tissue-stickiness.

Understanding where the administered cells accumulate, how much
this varies between patients and populations, and whether these biodis-
tribution patterns contribute to pharmacology and response seem to be
important, yet relatively neglected, clinical problems. Whole-body fluores-
cence or radio-isotope imaging technologies could potentially be imple-
mented to shed light on these unknowns63.

Biodistribution is particularly pertinent as clinical programs extended
beyond hematological malignancies. With very few exceptions, CAR-T
therapyhasbeen ineffective in solid tumors.While reasons for this lackluster
efficacy are multi-fold and uncertain, inefficient trafficking to the tumor
microenvironment appears to be a primary cause64. CAR-T expansion is
typically orders of magnitude lower in solid tumor indications, likely a
consequence of insufficient antigen exposure and CAR-stimulation. While
many cell engineering approaches are underway to enhance solid tumor
penetration65, routine quantification of T cell migratory patterns in vivo
would be an important step towards doing so systematically, and eventually
informing predictive PBPK-type distribution models.

Lymphodepletion response and resource competition between
adoptive and patient T cells. Chemotherapy-based lymphodepletion is
required to pre-condition patients, or in other words, ‘make space’ for
exogenous T cells prior to CAR-T administration. This is typically achieved
via a cyclophosphamide (Cy) andfludarabine (Flu) regimen initiated aweek
prior to CAR-T infusion66. The physiological mechanisms which control
circulating T cell counts are not fully understood, but cytokine availability is
likely a key contributor. For example, the systemic concentration of the
cytokine IL7 spikes in response to lymphodepletion67, presumably because
the ‘sink’ is removed (circulating lymphocytes). If such homeostatic cyto-
kines are produced at a continuous rate, this would set a maximal carrying
capacity.Adoptive T cells would thereby compete for limited resourceswith
patient (host) T cells as the immune system regenerates.

Clinical trials have shown that the magnitude of lymphodepletion
affects the Cmax of administered CARTs. More intensive chemotherapy,
either via drug combinations (Cy vs. Flu/Cy)68 or dosing (30 vs. 60mg/kg
Cy)67 enhances the Cmax for CD19-CAR-T therapy by approximately an
order of magnitude, improving progression-free survival. This phenom-
enon, endogenous T cells reconstituting alongside the administered CAR-
Ts limit growth via competition for resources, can be explored mathema-
tically by the inclusion of host T cells into our mechanistic PKPD model45.
The depth of lymphodepletion enhances CAR-T exposure by freeing up
cytokines and thereby enhancing the proliferation rate of the administered
T cells (Fig. 5A). Similarly, the rate at which host T cells reconstitute relative
to the administered CAR-T also affects exposure (Fig. 5B). This competitive
growth phenomenon has been explored more rigorously using data from
the ZUMA-1 trial of Yescarta in diffuse large B cell lymphoma69. The
authors reach similar conclusions, i.e., competition between exogenous vs.
endogenous T cells limits CAR-T expansion, and the variable response to
lymphodepletion between patients contributes to variance in CAR-T
exposure and patient outcomes.

Fig. 3 | Memory cell proliferation rate can explain
pharmacokinetic differences underlying response.
A The population pharmacokinetic model of
Kymriah21 simulated with alternate Cmax (fold
expansion) parameters reported for responders vs.
non-responders in B-ALL35. B The mechanism-
based PKPD model of Kymriah45 simulated over a
range of memory cell proliferation rates, varying
from 0.1 to 2-fold the estimated value.
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What does this mean for clinical practice and drug development? The
chemotherapy regimens used in current practice were developed empiri-
cally, out of experience with hematopoietic stem cell transplantation, rather
than from model-optimized design. We imagine there is space for
improvement based on ‘standard’ PKPD modelling of Cy/Flu regimens70.
Newer, targeted lymphodepletion regimens are in development, and have
proven beneficial in enhancing activity of CAR-T therapies (e.g., anti-CD52
alemtuzumab71). These could likely be further optimized using PKPD
modeling approaches. A first step would be routine monitoring and
reporting of patient peripheral blood T cell counts alongside CAR-T
kinetics. Finally, if cytokine availability limitsCAR-Texpansion, the cognate
signals could be engineered into next-generation products. Indeed, con-
stitutive IL15 receptor signaling constructs have proven effective in
improving expansion and activity in pre-clinical studies31, essentially a
mimetic of lymphodepletion.

Allogeneic elimination of administered cells by patient immune
systems. All approved CAR-T products, and the majority in develop-
ment, utilize autologous T cells as starting material. Patient-specific cell
manufacturing poses a series of limitations: manufacturing logistics are
quite complex, extended ‘vein-to-vein’ wait times negatively affect
patient outcomes72, the complexity of multi-gene engineering is limited,
and variability in starting material leads to products of inconsistent
quality. The use of consistent, allogeneic T cells as startingmaterial would

potentially alleviate these constraints73. However, the main barrier to
allogeneic cell therapy is immune cross-reactivity. Administered T cells
have the potential to recognize patient antigens and cause life-
threatening graft-versus-host disease. Conversely, administered T cells
will be recognized as foreign via major histocompatibility complex
(MHC) mismatches by a patient’s reconstituting immune system. Thus,
in addition to ‘competition for resources’ between exogenous and
endogenous T cells, allogeneic CAR-Ts will be subject to additional
clearance as a patient’s immunity regenerates. Even for autologous CAR-
Ts, there is evidence that humoral and cellular immunity directed against
CAR-constructs limits exposure and activity to varying extents74.

The first clinical data reported on donor-derived, allogenic CAR-T
therapy was the CALM trial of UCART19 for the treatment of refractory B
cell acute lymphoblastic lymphoma (B-ALL). This is aCD19-targetedCAR-
T bearing a TRAC-knockout, thereby removing donor TCR expression
and potential for graft-vs-host disease. The anti-CD52 antibody alemtu-
zumab was used in addition standard Cy/Flu chemotherapy for enhanced
lympho-depletion, but no MHC-gene editing strategies were employed75.
The product was eliminated on average much faster than the autologous-
counterpart Kymriah, with elimination mirroring patient T cell recon-
stitution (Fig. 6A, B). Moreover, patients could be separated into groups
(‘persisters’ and ‘non-persisters’) based on the rate of elimination, a differ-
ence explainable solely by differences in allogeneicity (Fig. 6C). Alemtuzu-
mab exposure was identified as a predictor of response status71, and a

Table 1 | Expansion ratios and dependent variables for select clinical and pre-clinical studies

CAR-T Indication Cell dose (cells) Cmax (cell/µL) Expansion ratio Reference

CD19 (Cy/Flu) NHL 1.4 × 109 *1 500 2 Turtle29

CD19 (Cy) NHL 1.4 × 109 *1 0.2 1/1400 Turtle29

CD19 (patient 1) CLL: Responder 1.1 × 109 20*2 1/10 Kalos15

CD19 (patient 2) CLL: Partial Resp. 5.8 × 108 0.2*2 1/600 Kalos15

CD19 (UCART19) B-ALL: Responders 108*3 10–1000 1/2 - 50 Dupouy71

CD19 (UCART19) B-ALL: Non-responders 108*3 <1 < 1/20 Dupouy71

CD19-CART Lymphoma, mix 108*4 10–1000 1/3 - 70 Kochenderfer101

Kymriah popPK 95% B-ALL 108*5 300*6 15 Stein21

Kymriah popPK 5% B-ALL 108*5 10*6 1/2 Stein21

BCMA 1-R2 Preclinical: MM.1 S 107 20 1/250*7 Sommer31

Kymriah Preclinical: NALM6 5 × 106 20 1/125*7 Stein102

iPSC-gdT-CD19 Preclinical: NALM6 107 2 1/2500*7 Wallet103

*1 2 × 107 cells/kg; assume 70 kg, 5 L blood volume.
*2reported as total cells; assume 5 L blood volume.
*3weighted average = 108. DL1 (n = 6) = 6 × 106, DL2(n = 12) = 8 × 107, DL3(n = 7) = 2 × 108; no dose-response.
*41–2 × 106 cells/kg, assume 70 kg, 5 L blood volume.
*5 median dose 3 × 106 cells/kg for patients ≤ 50 kg, and 108 for patients > 50 kg.
*6 scaled counts/ug DNA to cells/µL using data from Kalos15.
*7 Assume 2mL total blood volume in mice.

Fig. 4 | T cell biodistribution may have profound
effects on CAR-T pharmacokinetics. A Inclusion
of a ‘tissue’ compartment, with CAR-T cell dis-
tribution between blood and tissue described using
two kinetic parameters – tissue extravasation (blue)
vs. blood re-circulation (red). For simplicity, we
assumeCAR-T cells (T) interact with tumor cells (B)
in the blood, while the tissue compartment acts as a
sink. B Circulating CAR-T pharmacokinetics,
simulated over a four-log range of blood:tissue dis-
tribution rates. Dashed line represents a
theoretical LLQ.

0 10 20
Time (day)

10-4

10-2

100

102
C

AR
-T

 (c
el

ls
/µ

L)

0 100 200 300
Time (day)

0.01

0.1 

1   

10  

100 

Tr
an

si
t r

at
io

Tissue

Blood

T

B

T

+-

A B

https://doi.org/10.1038/s41540-024-00355-3 Article

npj Systems Biology and Applications |           (2024) 10:31 6



detailed mechanism-based model trained on the data concluded that allo-
geneic elimination is both themain driver of variance and barrier to durable
efficacy76.

The use of donor-derived T cells as starting material still poses logistic
challenges – notably finding a consistent, rigorously quality controlled
source of donor cells for manufacturing. Induced pluripotent stem cells
(iPSCs) offer a solution as a potentially limitless source of clonally derived,
consistent starting material that could be produced in large batches. Pro-
gress has beenmade in differentiation protocols for generating functionally
mature CD8+ T cells from iPSCs77–79, and technologies enabling GMP-
compatible, scalable batch production are emerging80,81. The first clinical
data on an iPSC-derivedCAR-Tproduct was reported by Fate Therapeutics
on FT819, a CD19-targeted CAR-T bearing a TRAC-knockout82. Efficacy
reported in the first data readout was suboptimal, and the single patient PK
data showedmuch faster clearance than autologous or donor-derivedCAR-
Ts (Fig. 6D). It is not possible to determine from this alone whether the lack
of persistence is due to cell-intrinsic deficits, or enhanced elimination by
patient immune recognition of the foreign cells. Regardless, mapping
computed exposures (60-dayAUC; Fig. 6E) to an exposure-responsemodel
built on Kymriah in CLL reveals that clearance fully accounts for the deficit
in clinical activity (Fig. 6F). A primary challenge for the next generation of
iPSC-CAR-T development is thus to first identify the mechanisms
responsible for shortened persistence and then implement cell engineering
strategies to overcome these deficits. This is a tall order,most likely requiring
a combination of improved differentiation protocols, engineered signaling
constructs which enhance memory cell generation83 plus MHC-editing
strategies for immune-evasion84.

So far, we have shown the utility of mathematical models in char-
acterizing the clinical pharmacology of engineered T cells. Specifically, we
have highlighted the drug development challenges unique to this field,
including product heterogeneity, tissue trafficking and biodistribution,
lymphodepletion response and allogeneic elimination. These factors can
significantly impact pharmacokinetics and efficacy, and model simulations
may be employed to inform clinical development strategies. A grand chal-
lenge over the coming years will be to integrate clinical insights with
advanced research technologies, and to rationally design next-generation
products with improved therapeutic profiles. We believe biology-based,
quantitative systems pharmacologymodels will be pivotal in addressing this
challenge.

Translational modelling and next-generation T cell therapies
Mathematical models are essential for product development and in silico
prototyping in many industries. While human physiology is too complex
and uncharted to fully recapitulate in a computer simulation, model-
informed drug development (MIDD) still plays a vital role in decision-
making across biopharma85,86. The models employed can be aligned on a
spectrumfromempirical tomechanistic. Empiricalmodels (basedpurely on
data and statistics, encompassing machine-learning to classic exposure-
response equations) are useful for quantifying system behavior, identifying
important variables, and specifying input-output relationships. However,
they are constrained to interpolation within the bounds of the training data.
As such,we cannot simulate the effect of dose schedule, tumorburden,T cell
composition, lymphodepletion response, etc. if such variables were not
included in model training. By incorporating established knowledge and
biological hypotheses, mechanism-based models have the advantage of
exploring ‘what if’ scenarios in silico14.

The sparse implementation of mathematical modelling in the cell
therapy space can be attributed to limited data availability. While hundreds
of CAR-T clinical trials have been conducted, the patient-level data for the
vast majority remains locked. Population-averaged data, when published, is
useful but obscures individual variability essential to deepening our
understanding of this therapeutic class. Numerous legal, intellectual prop-
erty and business factors play a role in the decision to withhold clinical data
from public release. As an alternative, mathematical models are an efficient
means of both encoding clinical results and sharing insights. Stein et al.21, for
example, did not release the underlying clinical data for Kymriah, but the
published mathematical model serves as a computational representation,
amenable to subsequent reuse,modification, andbenchmarking (aswehave
demonstrated). More broadly, executable computer code is a more con-
sistent, formalized platform for sharing scientific findings than text and
summary figures87.

Another primary challenge in model-informed development of T-cell
therapies is the inadequacy of pre-clinicalmodels. Therapeutic development
relies upon the use of rapid and high-throughput in vitro and in vivo sur-
rogates of clinical activity88. For therapeuticT cells, the gold standard in vitro
functional surrogate is the serial killing assay (repeated target cell lysis)89.
While it is routinely stated that pre-clinicalmodels are ‘not predictive’, there
exists, to our knowledge, no systematic studies qualifying this statement.We
were unable to identify studies comparing in vitro or in vivo pre-clinical

Fig. 5 | Effects of lympho-depletion and endo-
genous T cell reconstitution on CAR-T pharma-
cokinetics. A Circulating T cell counts and CAR-T
pharmacokinetics following lympho-depletion with
varying levels of intensity and fixed reconstitution
kinetics. B Circulating T cell counts and CAR-T
pharmacokinetics following lympho-depletion with
a fixed level of intensity with varying T cell recon-
stitution kinetics.
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functional readouts to clinical data for CAR-T therapies. Moreover, the raw
data readouts from such assays (cell counts) are highly dependent upon
specifics of the assay design (i.e. time, Effector:Target ratio, cytokine sup-
plements, etc.), which likely contributes to this pessimism. However, model
parameters such as kinetic rate constants inferred from such data are more
invariant to specifics of experimental design90 and thus facilitate clinical
predictions.

Simulations of a modified version of the ‘CARRGO’ model91 (itself a
derivative of the classic “predator-prey” model) reveal that the shape of
tumor dynamic curves from serial re-stimulation assays can be quite
complex, and interpretation non-intuitive (Fig. 7). However, fundamental
features of T cell function (proliferation rate, cytotoxic activity, and
exhaustion) yield distinct features that can be inferred using careful
experimental design coupledwithmathematical analyses. The effect of gene
edits or other cell engineering strategies on such kinetic rates could be
mapped onto PKPD models for clinical predictions. One such multi-scale
translational model was developed to understand the dose-response prop-
erties of the BCMA-targetedCAR-TAbecma (bb2121), connecting in vitro,
in vivo and clinical data92. Though not used (to our knowledge) for pro-
spective product design or lead selection, this model proves the technical
feasibility of doing so.

A critical yet unresolved issue in the T cell therapy space is the fact that
what makes an optimal phenotype for adoptive therapy remains elusive.
Without robust critical quality attributes (CQAs) linkingmolecular features
to function, it is not possible to rationally specify design or release criteria.
The potential design space is so large (CAR/TCR designs, gene edits, syn-
thetic biology-based regulatory switches, cell sources and expansion

protocols) and themechanisms linkingmolecular perturbations to function
so complex and non-linear, classic one-at-a-time hypothesis testing is not a
practically feasible approach to map the design space. High-throughput
CRISPR-library-based screens coupledwith single-cell transcriptome-based
phenotyping and functional assays could however be utilized. These have
proven effective in the design of novel CAR signaling constructs93,94 and the
identification of functional gene knock-ins95. Coupling these datasets with
biologically-informed mathematical models (i.e., signaling and transcrip-
tional regulatory networks96,97) could be instrumental in both specifying
CQAs, and predictively linking these attributes to cell culture inputs, a step
towards Quality By Design for cell therapy manufacturing98.

Cell-based therapies are inherently more complex than other treat-
ment modalities. A common refrain is “it’s too complicated to model” and
the requisite simplifying assumptions ignore thenuances of biology. Instead,
we see this as a strength. Model development (the careful specification of
important variables along with the hypothetical or known mechanisms
connecting them) and model calibration (the degree of certainty in the
model and consistency with data) are valuable pressure tests. The resulting
mathematical models are then quantitative representations of our mental
constructs, and simulations are simply the consequences of our assumptions
and assertations.

There is flurry of research and development work in the T cell therapy
space. Akin to Plato’s Allegory of the Cave99, clinical observations and
experimental data represent but flickering shadows cast from a deeper and
more complex reality. Mathematical models enable one to synthesize those
potential realities, test which are most consistent with the “flickering sha-
dows” and explore the consequences of such inferences. Ifwe are to translate

Fig. 6 | Effects of allogeneic elimination and
exemplary clinical data. A Reported individual
patient pharmacokinetics (n = 26) of the allogeneic
product UCART19, separated categorically into
‘persisters’ (P) and ‘non-persisters’ (NP)76. Raw data
overlaid with a modified Kymriah-PKPD model45

incorporating allogeneic clearance, tuned to
approximately match the population medians for
the two patient categories.BHost T cell regeneration
kinetics following lymphodepletion and UCART19
administration from the same patient cohort.
C Simulated CAR-T pharmacokinetics over a
5-order of magnitude range of allogeneic elimina-
tion rates. D Reported individual patient pharma-
cokinetics (n = 1) of the iPSC-derived product
FT819, first (cycle 1, 90 M cells) and second dose
(cycle 2, 180 M cells)100, overlaid with population-
pharmacokinetic simulations of Kymriah21.
E Exposure (60-day AUC) calculated for Kymriah,
UCART19 and FT819, and simulated for the allo-
geneic PKPD model tuned to persister (red square)
and non-persister (blue square) data. Boxes repre-
sent median ± 25 percentiles, and whiskers the min/
max or 1.5-times the inter-quartile range from the
box outline. F UCART19 and FT819 median expo-
sures mapped onto a simulation-based Kymriah
exposure-response model in CLL45.
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the plethora of novel cell designs andmanufacturing protocols into the next
generation of clinical products, mathematical models will be essential to
interpret the shadows, and assemble our perceptions into coherent theory.

Methods
PKPDmodel simulations
A standard two-compartment pharmacokinetic model with linear absorp-
tionwas simulated for illustrative purposes. Efficacy and toxicitywere linked
via direct response to serum concentration via Hill equations, and simula-
tions executed over a dose range of 2 through 18 (arbitrary units). Equations
were coded in MATLAB’s SimBiology toolbox, and all simulations were
executed using MATLAB R2022b.

Empirical CAR-T pharmacokinetic model simulations
Model equations and baseline parameters describing population pharma-
cokinetics ofKymriah inB-ALLwere taken fromStein et al.21. Responder vs.
Non-responder simulations were executed by encoding differences in
Cmax/fold expansion as reported byLiu et al.35 for the same clinical study (R
vs. NR Cmax equivalent to 105 vs. 103 counts/µg DNA), and statistics cal-
culated from1000 simulations (virtual patients). Dose response simulations
were executed by scanning initial CAR-T amounts (C0) across a 50-fold
scaled range with a median dose of 108 cells representing a dose ranging
study of 107 to 5 × 108 cells, approximately equivalent to that reported in the
original BLA22. Grid simulations of CAR-T cell expansion effect size vs.
population variance were executed by simulating the model (n = 10,000
virtual patients) with themaximum cell expansion ‘Cmax’ parameter scaled
from 1- to 10-fold the reported mean value (24000 copies/µg), and the log-
variance (‘OMEGA’) scaled from 1 to 0.1-fold the reported range across all
six model parameters. AUC28d was calculated based on a daily sampling
schedule, and minimum sample sizes were estimated at each point in the
grid by comparison to the control AUC28 using a two-sided t-test with a
power of 80% and significance of 0.05, using MATLAB’s sampsizepwr
function.

Translation between counts/µg DNA to cells/µL was estimated using
CD19-CAR-T data reported by Kallos et al.15: we estimate 1 count/µg
DNA ≈ 0.05 cells/µL.

Mechanistic CAR-T pharmacokinetic simulations
To simulate the effect of memory cell proliferation rate on CAR-T phar-
macokinetics, the mechanism-based CAR-T PKPD model published by

Kirouac et al.45 was executed with the µM parameter varied from 0.1 to
2-times the reported estimate, using a single parameter vector (CR
patient #1).

To simulate the effect of T cell distribution into tissues, the published
model structure was edited in SimBiology model builder. A second ‘tissue’
compartment was created, witch two parameters quantifying T cell dis-
tributing from blood to tissue (rate k12) and tissue to blood (rate k21) based
on mass action kinetics. The k21 parameter was multiplied by an autono-
mous (time-dependent) term to simulate a timedelay (TD) post-infusion as:

TD ¼ timek= TD50
k þ timek

� �
; ð1Þ

with TD50 = 12 days and k = 4 for switch-type behavior. With k12 (tissue
distribution) fixed at 6 day−1, simulations were executed with the blood re-
distribution rate (k21) varied over 4 orders of magnitude.

To simulate the effect of lymphodepletion and exogenous vs. endo-
genous T cell competition, host T cell (Th) reconstitution was described
using a saturating growth rate ordinary differential equation:

dTh
dt

¼ μh�TK= TK þ Tt

� � � Th; ð2Þ

wereTt = Th+ TCART (total circulating T cells), μh is the growth rate of host
T cells and TK the carrying capacity, set at 50 cell/µL such that steady state
circulating T cell counts saturate at approximately 103 cell/µL. The CAR-T
proliferation rates were all multiplied by the saturation function
(TK= TK þ Tt

� �
) such that proliferation is equivalently limited by total

circulating T cell counts.
Simulations were executed by varying the initial number of host T cells

post-lymphodepletion over 3-orders of magnitude (from 0.05 to 500 cells/
µL)while keeping the host T cell growth ratefixed at 0.35 day−1, orfixing the
post-lymphodepletion T cell count at 0.5 cell/µL while varying the growth
rate over 2-orders of magnitude from 0.03 to 3 day−1.

To simulate the effect of allogeneic clearance, each equation in the
abovemodel was edited to include an additional termmodelling direct host
T cell CAR-T killing via mass-action kinetics:

dTCART

dt
¼ . . .� kkill�TCART�Th: ð3Þ

Fig. 7 | Quantification of in vitro functional assays
for translational systems pharmacology model-
ling. A CAR-T cell proliferation and tumor cell
dynamicsmeasured in in vitro and in vivo functional
assays functional data can yield insights into fun-
damental biology and facilitate clinical predictions
when quantifiedwith systems pharmacologymodels
(Created with BioRender.com). Model simulations
of CAR-T cell and tumor cell interactions in a 24-
hour serial restimulation assay reveal the complex,
non-linear effects of drug product characteristics
such as CAR-T cytotoxicity (B), proliferation (C), or
exhaustion (D) on tumor cell survival.
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Simulations were executed by fixing the initial host T cell count (Th)
post-lympho-depletion at 0.5 cell/µL and growth rate (μh) at 0.35 day

−1 and
varying the allogeneic cell killing rate (kkill) from 10−12 to 10−7 cell−1day−1.
Persisters vs. non-persisters were simulated by setting the allogeneic cell
killing rate (kkill) at 0 and 7 × 10−9 cell−1day−1, respectively.

UCART19 and FT819 data
CAR-T pharmacokinetic data was digitized using Graph Grabber v2
(Quintessa). For UCART19, individual patient data was extracted from the
supplemental figures in Derippe et al.76, and FT819 using a figure from an
ASH 2022 poster on interim FT-819-101 trial data100.

Simulations of serial restimulation assays
We adapted the CARRGO predator-prey model of CAR-T cell (E) and
tumor (T) cell interactions91 to include CAR-T cell exhaustion upon
interaction with Tumor cells (rate constant ν):

dE
dt

¼ γE � θE � νET; ð4Þ

dT
dt

¼ ρT 1� βT
� �� κET; ð5Þ

and simulated 3, 24-hour restimulations at 1:1 E:T where 5000 tumor cells
were added at the end of each stimulation. Baseline model parameters were
ρ ¼ γ ¼ logð2Þ=24 hour−1, β ¼ 10�5 cell−1, κ ¼ 10�5 hour−1 cell−1, θ ¼
10�3 hour−1, and ν ¼ 10�6, with E 0ð Þ ¼ T 0ð Þ ¼ 5000 cells. We simulated
the model over a range of parameter sweeps by fold-changing each model
parametermultiplicatively one-at-a-timewith the following fold changes: 1/
3, 1/2, 1, 2, 3 for cytotoxicity (κ) and proliferation (γ), and 1/2, 1, 3, 5, 7 for
exhaustion (ν).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data and models were extracted from prior publications.
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