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1. Introduction

The Rho GTPases are central regulators within 
signaling networks of eukaryotic cells. While their 
effects extend to nearly all cell functions, a primary well 
established role is to control the actin cytoskeleton, 
actomyosin assembly and myosin contraction 
[1]. This fact makes Rho GTPases important in 
regulating cell shape in single cells and in epithelia. 
Rac1 promotes cell spreading by activating WASP 
and Arp2/3, leading to dendritic actin nucleation and 
lamellipodial protrusion; RhoA activates ROCK, that 
in turn activates myosin light chain phosphorylation, 
and myosin-induced cell contraction. Hence, while 
Rac1 promotes cell spreading, RhoA counteracts 
this by stimulating cell contraction. While previous 
studies have addressed how GTPases spontaneously 
segregate to front or back in a cell [2–5], and how this 
leads to cell polarization and motility [6, 7], here we 
focus primarily on the effect of GTPase activity on cell 
contraction or spreading, and on their interplay with 
tension and mechanical forces experienced by cells.

Rho GTPases cycle between active and inactive 
forms: they are activated by guanine nucleotide-
exchange factors (GEFs), and inactivated by GTPase-
activating proteins (GAPs) [1]. GTPases are highly 

interconnected, with crosstalk via a host of proteins. 
Rac1, RhoA and Cdc42 are central regulators, down-
stream of cell-surface receptors that sense a host of 
stimuli, including small ligand gradients [8], adhesion 
molecules, extracellular matrix (ECM), substrate stiff-
ness [9], as well as forces and mechanical tension [10].

It has been known for many years that mechani-
cal tension can stimulate cells and lead to signal trans-
duction, but details of the connections were poorly 
understood. More recently, techniques for measuring 
forces felt by cells [11, 12] have been used in coordina-
tion with methods for observing activity of GTPases 
[13]. Such experimental work has revealed a direct 
connection between mechanical tension and GTPase 
activity in cells. Weiner and coworkers [14] showed 
that aspiration of neutrophil membrane by a micro-
pipette directly inhibits Rac1 activity. When tension 
is released, Rac1 activity resumes in the cell. Experi-
ments with atomic-force microscopy pulling on cell 
membrane lead to similar conclusions. Compressing 
cells was shown to activate RhoA [15] in a rapid and 
reversible way. Isotropic stretching of vascular smooth 
muscle cells on elastic substrate was shown to inhibit 
Rac1 (timescale of 5 min, recovery over 45 min) in 
[16]. The authors quantified GTPase activity versus % 
stretch, showing a decrease by about 50% in response 
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Abstract
Regulators of the actin cytoskeleton such Rho GTPases can modulate forces developed in cells by 
promoting actomyosin contraction. At the same time, through mechanosensing, tension is known to 
affect the activity of Rho GTPases. What happens when these effects act in concert? Using a minimal 
model (1 GTPase coupled to a Kelvin–Voigt element), we show that two-way feedback between 
signaling (‘RhoA’) and mechanical tension (stretching) leads to a spectrum of cell behaviors, 
including contracted or relaxed cells, and cells that oscillate between these extremes. When such 
‘model cells’ are connected to one another in a row or in a 2D sheet (‘epithelium’), we observe waves 
of contraction/relaxation and GTPase activity sweeping through the tissue. The minimal model 
lends itself to full bifurcation analysis, and suggests a mechanism that explains behavior observed in 
the context of development and collective cell behavior.
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to a 15% stretch (figure 2(B) in [16]). How cells sense 
mechanical forces is reviewed in [10, 12], and the iden-
tity of multiple Rho GEFs and two GAPs involved in 
mechanotransduction is summarized in [17].

Cells have diverse mechanosensory mechanisms. 
Molecular details of the link between mechanical ten-
sion and GTPase activities are still emerging. Examples 
include Rap1 as a tension-sensor and its effect on Rac 
[18]. Tension-sensitive calcium ion channels produce 
signals to the Rho GTPases [15]. Integrins, vinculin, 
and talin act as mechanosensors that funnel signals 
to central regulators [19, 20]. Membrane tension is 
known to affect actin assembly, directly and through 
a PLD2-mTORC2 pathway that inhibits actin nuclea-
tion through WAVE2 [21]. Cell-substrate and cell–cell 
adhesion, cytoskeleton, and their effects on RhoA pro-
teins is reviewed in [17]. Proteins such as merlin can 
act as a mechanochemical transducer by localizing 
to cortical cell–cell junctions when pulling forces are 
transmitted from cell to cell in epithelial tissue [22]. 
Focal adhesion kinase (FAK), for example, inhibits 
RhoA (via p190RhoGAP) and activates it (via Rgnef) 
in response to tension-dependent integrin reorgani-
zation, facilitating cyclic activation of RhoA and Rac1 
[23]. Membrane-curvature sensing proteins such as 
FBP-17 and BAR domain can regulate the cycles of cell 
protrusion and retraction by controlling Rac1 through 
SLIT-ROBO GAPs (srGAPs) [24].

The connection between mechanical forces and 
intracellular signaling is a two-way street. On one 
hand, mechanical tension can influence GTPase activ-
ity. On the other hand, GTPases lead to cell deforma-
tion (spreading or contraction) that exerts pulling, 
stretching, or contractile forces on the cell, the local 
ECM, and/or neighboring cells. Hence the coupling 
between chemical and mechanical systems merits 
investigation. This observation motivates our current 
paper. While mechanochemical interactions have been 
considered in previous work [25–29], to our knowl-
edge, this is the first instance that they are applied to a 
GTPase-cell and tissue dynamical system.

Rho GTPase are embedded in complex signaling 
networks, with many effectors, interconnections, and 
inputs. The details of such networks vary from one cell 
type to another, and adapt to cell state and environ-
ment. Nevertheless, recent experimental and mod-
eling studies have provided evidence for the hypothesis 
that certain cell behaviors can be explained as emer-
gent properties of relatively small subsets of these net-
works, consisting of GTPase modules. Examples of this 
type include the bistability and hysteresis of cell shape  
[30–32] and cell motility behavior [33], as well as 
diverse motility phenotypes in melanoma cells on pat-
terned adhesion surfaces [28, 29]. This idea of under-
standing aspects of cell behavior from the dynam-
ics of simple underlying GTPase circuits guides our 
approach here. Rather than attempting to describe the 
intricacies of signaling networks and the cytoskeleton, 
we focus attention on the simplest minimal GTPase 

model, coupled to a minimal model for cell tension, 
and explore the range of emergent behavior.

Our first step is to consider a single GTPase, such 
as RhoA, associated with actomyosin contraction. 
We assume a minimal model for RhoA activity, capa-
ble of bistable dynamics and link it to feedback from 
mechanical tension. High RhoA activity leads the cell 
to contract, which results in the reduction of tension. 
This simple idea is explored first in a single spatially 
uniform cell. We characterize high or low GTPase 
activities and transitions between these, and the cou-
pled dynamics of cell tension. The simplicity of this 
(two ordinary-differential equation) model makes it 
possible to fully characterize parameter-dependence 
and delineate regimes of behavior. Briefly, we find 
regimes of (1) high and (2) low RhoA (corresponding 
to contracted or relaxed cells) separated by (3) regimes 
of spontaneous, persistent cycling between these states 
(corresponding to cycles of contraction and relaxation 
in the cell).

We then consider how the minimal model plays 
out when many cells are mechanically coupled (e.g. 
by adhesion or tight junctions) in a row (1D) or in an 
epithelial sheet (2D). Despite the elementary aspects 
of the model, multicellular systems exhibit a variety of 
interesting behaviors. We show that, aside from overall 
contraction or sporadic cycling, there are waves and 
spatially correlated dynamical patterns of fluctuations 
in cell size. We simulate the model in 1D and 2D, and 
point to possible connections with exper imentally 
observed cell behaviors.

In our final step, we also consider a related GTPase 
circuit consisting of Rac1 and RhoA (henceforth 
Rac and Rho). Mutual inhibition between these has 
been found in a number of cell types [34, 35] and 
highlighted in recent biological literature for both 
normal and malignant cells [28, 31, 33, 36, 37]. The 
effect of such GTPase interactions on cell shape has 
been explored theoretically [29, 38], but the coupling 
between cell shape and mechanical forces is the main 
theme that motivates our work here.

2. Minimal model for a single 
mechanochemical cell

We first considered the simplest case, where the 
mechanosensitivity of a single cell affects its GTPase 
activity (figure 1(A)), which, in turn, affects a contractile 
actomyosin meshwork in the cell. Our minimal model 
tracks the activity of a GTPase such as RhoA over time 
in a single cell. (While RhoA is known to redistribute 
intracellularly, we ignore spatial variations within a 
cell, so as to build a first working multicellular model.) 
RhoA acts through Rho-associated protein kinase 
(ROCK) to phosphorylate myosin light chain, leading 
to actomyosin contraction. Consequently, to capture 
the mechanical contraction, we associate a mechanical 
Kelvin–Voigt element (spring-dashpot system) with 
the cell size. In one dimension, cell size is represented by 
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a length L as shown in figure 1(C). A cell at mechanical 
equilibrium has some constant ‘rest-length’, L  =  L0, 
as in figure 1(B). To couple the signaling with the 
mechanical tension, we assume that cell tension, T, 
proportional to (L  −  L0), enhances RhoA activation. 
Thus, if a resting cell is stretched, RhoA activity 
increases. In turn, active RhoA results in contraction of 
the cell (we assume that active RhoA decreases the rest-
length of the cell). As the cell contracts, it counteracts 
the stretching force, resolving the tension. This reduces 
the GTPase activity to a lower level. The overall 
paradigm of the model is shown as a cycle through 
states following the purple arrows in figure 1(B).

2.1. Model equations and definitions
For the activity of the GTPase, we adopt the generic 
equation

dG
dt

= (Tension-dependent rate of activation)Gi

− (Rate of inactivation)G,
 

(2.1)

where Gi is the level of inactive GTPase. Ignoring 
spatial variation, and assuming that the total GTPase 
GT is roughly constant over the timescale of interest 
(GT = G + Gi  =  constant), leads to a single equation, 
(2.1) with Gi = GT − G. This equation is a direct 
adaptation of the 1-GTPase spatially-uniform 
version of the model in [39], with the addition of the 
mechanical coupling.

In the case of a linear equation (2.1), that is, if 
terms in braces are constant, no interesting behavior 
is found. Some feedback is needed to obtain the non-
linearities that generate bistability and allow for non-
trivial dynamics. We have typically assumed positive 
feedback from active GTPase to its own activation  

[5, 39] (see [40] for the equivalence of other assump-
tions). Furthermore, based on the prevalence of GEF-
associated mechanotransduction [17], we include the 
tension-dependent feedback f (T) in the activation 
rate. This leads to a model of the form

dG
dt

=

(
b + f (T) + γ

Gn

1 + Gn

)
(GT − G)− G,

 (2.2a)
where b is basal activation rate (scaled by the constant 
inactivation rate), and γ is a similarly scaled rate of 
feedback activation. (Details of the scaling are provided 
in the appendix.) In our model, cell tension depends 
on the ‘size’ L of the cell relative to its concurrent rest-
length L0. We considered several forms of f (T), as 
described in the appendix. Here we concentrate on the 
case that

f (T) = β
1

1 + exp[−α(L − L0)]
, where T = L − L0.

 (2.2b)
The parameter β governs the strength of feedback 
from tension to GTPase activation. The ‘squashing 
function’ in (2.2b) means that the mechanical input 
has no effect if L ! L0, but builds up to a maximal level 
of β for L ! L0. Consequently, our ‘model GTPase’ is 
sensitive to a pulling force, but not to a squeezing or 
contractile force. (It is straightforward to generalize 
this minimal assumption.) The parameter α governs 
the sharpness of the GTPase activation response to 
cell stretching. It is worth remarking that this form 
of mechanical model (2.2a) with (2.2b) bears a close 
resemblance to the equation proposed in [15] for the 
dynamics of active RhoA in human fibrosarcoma cells 
that are exposed to mechanical tension. Our squashing 
function has the same basic property of switch-like 
activation as their Hill-function dependence on T.

Figure 1. The minimal model for coupled GTPase activity and cellular-tension. (A) Schematic of our minimal model for a GTPase 
‘mechanochemical cell’. Typical GTPase cycling between active (G, orange) and inactive (Gi, blue) forms. Black arrows denote 
interconversion (solid), and positive feedback (dashed) from the active GTPase and from tension to GTPase activation. Purple 
elements (in (A) and (B)) represent mechanical effects. We assume that Gi = GT − G by conservation. Active RhoA results in cell 
contraction, which reduces tension. Tension is assumed to increase the activation rate of RhoA. (B) A resting cell (rest length L0, top 
left) is stretched by an external force to length L (bottom left); the ‘spring’ schematic represents contractile actomyosin). Tension 
T ∝ (L − L0) in the stretched cell activates RhoA (inset, lower right, color scheme as in (A)), leading to a coupled mechanochemical 
system. RhoA activity results in actomyosin-powered cell contraction, reducing cell tension. As RhoA is inactivated by the loss of 
tension (upper right), the cell relaxes. (C) Mechanical representation of the actomyosin cell cortex as a Kelvin–Voigt element.
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For the mechanical coupling, we assume that 
GTPase activity (e.g. RhoA activating ROCK, which 
activates myosin light chain) effectively shortens the 
rest length of the ‘cortical actomyosin spring’ promot-
ing contraction. We model this by the following equa-
tion for the cell size L:

dL
dt

= −ε(L − L0), where L0 = "0 − φ
G p

G p
h + G p

,

 (2.2c)
and ε = 2k/λ is the rate of contraction. This model 
assumes that the cell acts as an overdamped elastic 
spring with Hookian spring constant k, and viscous 
coupling to a fixed substrate (viscosity λ). The rest 
length, L0, is assumed to decrease from a fixed rest 
length, !0, depending on the amount of active GTPase 
within the cell, G. The dependence on G is represented 
by a Hill function with amplitude φ, half-maximum 
GTPase activity Gh, and power p. For large GTPase 
activity G, the rest length approaches L0 ≈ !0 − φ, 
while for low GTPase activity, the rest length remains 
near !0. A switch occurs close to the activity level 
G  =  Gh. The larger the value of p, the sharper 
the transition between small and large L0 values. 
Equation (2.2c) presumes the overdamped regime, 
where inertial forces are negligible, as appropriate for 
modelling cell-scale behavior. Equation (2.2c) follows 
from a force balance at the two cell ends:

λ
dx1

dt
= k(L − L0) and λ

dx2

dt
= −k(L − L0),

where L = x2 − x1,
 

(2.3)

for x1, x2 positions of the left and right cell boundaries 

(in 1D), and from dL
dt = dx2

dt − dx1
dt .

2.2. Results
The single GTPase model on its own (with 
β = 0), is bistable for a range of parameters. As the 
basal activation rate b increases, the system transitions 
from a monostable state with low GTPase activity, 
through a bistable regime, and finally to a monostable 
state with high GTPase activity (figure 2(A) and [29, 
39]). With mechanical feedback (β != 0) as described 
in section 2.1, we find three regimes of behavior: (1) 
for small β, the cell remains relaxed with low GTPase 
activity, (2) for large β, the cell becomes contracted 
with high GTPase activity, and (3) for intermediate 
β, the cell dynamics tends to a stable limit cycle with 
GTPase activity cycling between low and high levels. 
The bifurcation diagram of figure 2(B) shows these 
three regimes of behavior, displaying steady state 
cell length, L, as a function of the coupling feedback 
strength, β. For this choice of parameters, the three 
regimes of behavior occur for different intervals of β; 
however, for different parameter values, it is possible 
that the limit cycle and contracted steady-state can 
both be stable for the same value of β.

The dynamics of the cell size (L, solid), rest-length 
(L0, dash-dotted curve) and GTPase activity (G, dashed 

curve) is shown in figure 3 for each of these regimes. 
When the feedback from tension upon GTPase acti-
vation is small, (A) β = 0.05, the cell remains relaxed. 
As the feedback parameter increases, (B) β = 0.2, the 
cell oscillates, or (C) for β = 0.3, the cell contracts and 
maintains a small length.

We can understand the results based on known 
dynamical systems behavior of a bistable system (the 
GTPase activity) with slow negative feedback (the 
mechanical contraction). The coupling can constrain 
the bistable system to either its low or its high steady 
state levels, or, for intermediate coupling, lead to a tra-
jectory around a hysteresis loop. In the latter case, the 
system behaves as a relaxation oscillator. As shown by 
the hysteresis loop in figure 2(A), a given value of the 
activation rate b is increased when the cell is stretched, 
eventually leading to a transition from low to high 
GTPase activity. At this point, the GTPase activity 
leads to cell contraction, effectively decreasing the rest 
length L0. As the cell contracts, L approaches L0, and 
tension decreases, reducing GTPase activation rate and 
transiting to the low GTPase state. This resets the rest-
length to a larger value. With the appropriate relative 
timescales of mechanics and chemical signaling, this 
cycle repeats, setting up the limit cycle oscillations.

3. Mechanical coupling in a 1D array  
of cells

Having characterized the minimal ‘model cell’, 
we next considered the behavior of a coupled 
array of such cells. As a first step, we coupled cells 
mechanically in one spatial dimension (1D), as 
shown in figure 4. Here the lengths of the cortical 
actomyosin Kelvin elements are simply the distances  
Lj = xj+1 − xj, j = 1, . . . , N − 1 between ‘nodes’ 
(edges of cells along a 1D axis). Each cell has its own 
internal GTPase signaling, following equation (2.2a), 
and only responds to neighboring cells through 
mechanical force. Hence, we assumed that the motion 
of the cell ends, xj, is prescribed by the following system 
of ODEs:

λ
dx1

dt
= k(L1 − L1,0), (3.1a)

λ
dxj

dt
= −k(Lj−1 − Lj−1,0) + k(Lj − Lj,0), (3.1b)

λ
dxN

dt
= −k(LN−1 − LN−1,0), (3.1c)

with j = 2, . . . , N − 1. The rest-length in each cell, 
Lj,0, is coupled to GTPase signaling according to 
equation (2.2c).

3.1. Tissue dynamics in 1D depend on mechanical 
feedback strength
When many cells are coupled together, new tissue-level 
behaviors emerge. For example, as one cell is displaced 

Phys. Biol. 15 (2018) 046004



5

C Zmurchok et al

Figure 2. Bifurcation diagrams for the minimal model (2.2). (A) On its own the GTPase model (2.2a) (with f (T) = 0) exhibits 
bistability with respect to the activation rate b. (Other parameters: γ = 1.75, n  =  4, GT  =  2). Mechanical tension affects the GTPase 
activation rate, leading to the possibility of a relaxation oscillator (hysteresis loop) shown in this diagram. (B) Bifurcation diagram 
for the coupled GTPase-tension minimal model equation (2.2), showing how cell length L varies with the strength of coupling (β) of 
tension to GTPase activation. L can be long (small β, solid yellow line), oscillatory (middle values of β, magenta line), or short (large 
β, solid blue line). In both panels, red points are saddle node bifurcations, and the black point corresponds to a Hopf bifurcation. 
Other parameters are b  =  0.1, γ = 1.5, GT  =  2, β = 0.2, "0 = 1, φ = 0.75, Gh  =  0.3, ε = 0.1, α = 10, and n  =  p  =  4.

Figure 3. Dynamics of the minimal model for a single cell with one GTPase (‘RhoA’) and feedback from tension to GTPase 
activation, equation (2.2). In (A), the feedback from tension (β = 0.05) is weak, and the cell remains relaxed. In (B), the feedback 
(β = 0.2) is of intermediate strength, and limit cycle oscillations arise. In (C), the coupling is so strong (β = 0.3) that GTPase activity 
is always high, and the cell stays in a contracted state. Parameters are b  =  0.1, α = 10, γ = 1.5, n  =  p  =  4, !0 = 1, GT  =  2, φ = 0.75, 
Gh  =  0.3, ε = 0.1. When the GTPase activity level is close to G  =  Gh, the cell rest length changes sharply from L0 ≈ !0 to L0 ≈ !0 − φ 
(green dash-dotted), resulting in the dramatic changes in cell length seen in (B). Some lag stems from the slower dynamics of L, due 
to the slow mechanical response (small parameter ε).

Figure 4. Cell interactions in a 1D array of ‘model cells’. (A) The contraction-relaxation of each cell affects the force of pulling on its 
neighbors. Each cell has its own internal GTPase signaling. (B) The array behaves much like a system of overdamped springs in series. 
The GTPase signaling affects the rest-lengths of the springs Lj, and the dynamics then moves the nodes xj that represent cell borders.

Phys. Biol. 15 (2018) 046004
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or contracts, its neighbors are stretched or squeezed. 
This change in length then affects tension, T, and 
ultimately the GTPase activity, G of the neighbor(s), 
that can similarly affect their neighbors, and so on. 
The emergent behavior depends on the signaling 
parameters of the individual cells. For example, if 
the strength of feedback from mechanics to GTPase 
activity, β, is sufficiently small or sufficiently large 
everywhere, the entire tissue will be relaxed (and 
long) or highly contracted (and short), respectively. 
Examples of these behaviors are shown in figures 5(A) 
and (C) and in supplementary movies 1 and 3 (stacks.
iop.org/PhysBio/15/046004/mmedia).

For β in the (single-cell) oscillatory regime 
(β = 0.2, as in figure 3(B)), and a small array of cells 
(N  =  10), the entire array can exhibit synchronous 

oscillations, as shown in figure 5(B) and in supple-
mentary movie 2. In this case, as each cell expands or 
contracts, the force exerted on its nearest neighbors 
induces a change in the chemical signaling, which 
results in the coordination of the entire group (possi-
bly excluding the cells at either end). This shows up as 
coherent bands of color in figure 5(B) while the total 
length of the array (vertical dimension in figure 5) 
oscillates.

In figure 5(D), two cells at the right end of the row 
are initially ‘stimulated’ with high GTPase activity, 
while the rest of the cells are at their relaxed steady-
state. Contraction of the stimulated cells stretches 
their immediate neighbors to the left, which activates 
new GTPase signaling in those neighbors and subse-
quent contraction. In this way, a unidirectional wave 

(A) (B)

(C) (D)

(E) (F)

Figure 5. 1D tissue dynamics result from mechanochemical interactions. Kymographs show the 1D position of cell edges (vertical 
axis, black curves; suppressed for clarity in (E) and (F)) with color indicating the GTPase activity within each cell. Parameters as in 
figure 3(B), except in (D). For a small number of cells (N  =  10), the tissue can be (A) relaxed (β = 0.05, 10 cells), (B) oscillatory  
(β = 0.2, 10 cells), or (C) contracted (β = 0.3, 10 cells). (D) An initial perturbation of GTPase activity at one end of the row can 
propagate a wave of GTPase activity and contraction throughout the whole row of 14 cells. Larger number of cells: (E) N  =  50  
β = 0.2, (F) N  =  100 , β = 0.2: waves of contraction and relaxation propagate across the tissue. See also corresponding 
supplementary movies 1–6, and model details in appendix A.2.
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of GTPase activity and contraction sweeps across the 
entire row of cells. (See appendix A.2 for parameter 
and model details.) As we comment in the Discussion, 
this wave of contraction resembles a wave associated 
with zippering in the neural tube closure of an ascidian 
embryo [41].

As the number of cells increases, the spatial extent 
of the mechanical force transduction can no longer 
span the entire ‘tissue’, and appears to become 
localized to some neighborhoods. Then, patches of 
 contraction and relaxation emerge; these can prop-
agate throughout the tissue as waves of contraction-
relaxation. Typical examples for 50 and 100 cells in 
such 1D arrays are shown in figures 5(E) and (F) and 
in supplementary movies 5 and 6. In such large arrays, 
GTPase activity is also seen to form wave patterns that 
sweep back and forth across the 1D domain. This leads 
to the slanted bands of color in  figures 5(E) and (F). 
Even though the GTPase activity is not directly cou-
pled between cells, the mechanical coupling effec-
tively leads to GTPase coordination on some spatial 
and temporal scale.

While we cannot claim to have exhaustively 
explored all possible behaviors of this 1D cell collec-
tive, the few results shown here demonstrate an inter-
esting range of behavior. Studying this phenomenon 
in single cells and in a 1D array of cells, so far, has draw-
backs in missing the representation of cell shape and 
interactions with more than two neighbors. Conse-
quently, we next consider realization of the same idea 
in a 2D setting.

4. Cell shape and cell–cell interactions  
in 2D epithelial sheets

4.1. Adapting the model
In order to describe cell expansion and/or contraction 
in 2D, we modified the model to represent changes 
in projected cell area, A, rather than cell length. 
Generalizing from the 1D model, we assign a ‘resting 
cell area’ A0 to the cell, and assume that positive 
(A  −  A0) corresponds to an average cell-stretching 
tension that has an effect in 2D similar to (L  −  L0) 
in the 1D model cell. (This assumption can be 
modified, scaled according to A ≈ cL2, or adapted 
to experimental data). In the context of the simple 
toy-model, the main effect, preserved by these 
assumptions, is that GTPase activity and mechanical 
tension switch one another on or off.

To simulate cell shape and intracellular chemistry, 
we used a publicly available software package, Com-
puCell3D that represents cell shapes using the cellular 
Potts model (CPM) formalism [42]. Briefly, the pixel-
based motion of a cell edge outwards (expansion) or 
inwards (contraction) is governed by a Hamiltonian, 
H, describing the total energy in the system. The Ham-
iltonian includes adhesion energies, and ‘volume’ 
constraints (area constraint in 2D). At each time step 
in the simulation, several small changes are introduced 

(pixel-copy attempts or spin-copy attempts). The 
CPM algorithm accepts such changes if this decreases 
the Hamiltonian (overall ‘energy’ of the system), or 
accepts it randomly otherwise as a small noise-induced 
‘fluctuation’. While CPM does not explicitly track 
forces, it has recently been shown to be consistent with 
other simulations where forces are made explicit [43], 
for example, vertex-based cell models.

Several aspects of the simulations were adapted 
to the technical requirements of the CPM. Time was 
scaled by a factor τ, and the notion of a ‘target area’, AT, 
was introduced (details in the appendix). The actual 
cell area A and the GTPase-governed target cell area 
AT are tracked in each CPM cell. The time constant τ 
scales ‘real time’ to Monte Carlo step (MCS) ‘time’. 
As before, we ignore spatial variation in GTPase activ-
ity within a cell, and assume that the total GTPase, 
GT, is roughly constant over the timescale of interest. 
The GTPase and target area dynamics are prescribed 
by ODEs within each cell, while the actual cell area, A, 
is updated stochastically to approach the target area 
AT by the CPM. As before, we assume that increasing 
tension (represented as the difference between target 
area and actual cell area), can increase GTPase activity 
via the function f (T). We first examined the GTPase-
tension model in a single 2-dimensional cell, and later 
consider the coupling between interconnected cells.

4.2. Single cell dynamics
With appropriate calibration, we found that the 2D 
CPM implementation recapitulates the behavior 
found in the single cell model. As shown in figures 6(A) 
and A10, a parameter set corresponding to 1D cell 
oscillations also led to single-cell oscillations in the 2D 
CPM cell. The CPM also produces relaxed cells and 
contracted cells for corresponding parameter sets in 
the 1D model, see figures A8 and A9 for relaxed cells.

CPM simulations have inherently stochastic behav-
ior due to the allowable random fluctuations men-
tioned above. As a result, we discovered new behavior 
that was not found in the deterministic 1D cell simula-
tions, namely that spontaneous cycles of high to low 
GTPase level (and low to high cell areas) could occur, 
even in parameter sets consistent with monostable 
states. An example of this type is shown in figure 6(B). 
Here, parameter values were set to the stable small-size 
single-cell regime in the 1D model (β = 0.5). The cell 
was in a contracted state for some time, but displayed 
two cycles of  contraction-relaxation, at MCS 100 and 
150, before returning to its quasi-quiescent state. In 
figure A11, we also see an example of cells switching 
between small and large limit cycle oscillations for 
β = 0.175.

4.3. Coupling CPM cells in 2D
We asked what happens when there are multiple cells 
in the 2D simulation. Accordingly, we set up two 
types of situations in which N cells are present, each 
governed by its own set of 2D equations (see appendix) 
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with the same set of parameters but random initial 
conditions. As shown in figure A2 for N  =  9 cells, our 
first implementation was of cells that have no direct 
mechanical coupling. As expected, in this case, cells 
behave independently with distinct and uncorrelated 
copies of the dynamics. The Rho GTPase levels inside 
such cells (top, figure A3) remain unsynchronized, as 
detected by the Kuramoto order parameter and the 
variance in the phase (details in appendix A.4).

We next initiated cells that were contiguous and 
implemented cell–cell interactions via adhesion terms 
in the CPM Hamiltonian (details in appendix A.3). 
Essentially, cells that have larger interfaces with their 
neighbors have stronger adhesion (and lower adhesion 
energy). An example of such simulations are shown in 
figure A4. As a cell changes size, neighboring cells are 
affected through cell–cell adhesion. As one cell area 
contracts, its neighbors are stretched, causing their 
tension, proportional to (A  −  AT), to increase. This 
promotes a neighbor’s GTPase activity, and leads it to 
contract. In this way, mechanical forces are propagated 
throughout the tissue and affect GTPase signaling in 

each cell. As seen in figure A5, GTPase activities rap-
idly synchronize in the entire group of nine cells, with 
a few small fluctuations in phase seen occasionally. The 
larger Kuramoto order parameter and lower variance 
in the phase (note scaling on the vertical axis) as com-
pared with simulation for independent cells figure A3 
also confirms this synchronization.

We experimented with the adhesion between cells, 
which essentially couples neighbors to one another. 
As shown in the sequence of figures A5–A7, as cells 
become more adhesive to one another (‘low cell–cell 
adhesion energy’) than to the surrounding ‘medium’, 
the mechanical coupling is stronger, and the synchro-
nization of cell oscillations is more regular.

4.4. Waves of contraction and GTPase activities  
in 2D model tissue
Next, we asked how larger numbers of cells, also in 
2D CPM, would behave when coupled mechanically 
through their adhesion. To probe this question, 
we simulated a circular tissue composed of 373 
contiguous cells with initial areas randomly chosen.  

(A)

(B)

Figure 6. Single cell oscillations in 2D cells simulated with the cellular Potts model (CPM) formalism using the CompuCell 3D 
software [42]. In (A) and (B), cell color represents a (spatially uniform) GTPase activity level from low (blue) to high (yellow and 
orange), as shown in the color bar. Cell shape changes over time as indicated by the progression of snapshots numbered by the 
Monte-Carlo steps (MCS) of the CPM (MCS increase left to right and top to bottom). Cell target area (green) and actual area 
(blue) as well as GTPase activity is plotted over 250 MCS of the CPM. In (A), β = 0.2 results in a single oscillatory cell. In (B), the 
cell stochastically switches between high GTPase steady state (corresponding to β = 0.5) and a large amplitude limit cycle. Other 
parameters were: τ = 2000, b  =  0.1, m  =  10, γ = 1.5, n  =  p  =  4, GT  =  2, ε = 0.1, a0  =  400, φ = 0.75, and Gh  =  0.3.
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As before, we chose parameters in the oscillatory single-
cell regime. Results are shown in figure 7 for the case of 
intermediate adhesion, in figure 8 for the case of strong 
adhesion, and in figure A12 for the case of weak adhesion 
(see also supplementary movies 7A and 7B, 8A and 8B, 
and 12, respectively). Here the 2D tissue is much larger 
than a few cell diameters. In figures 7 and 8, we show two 
views of the same ‘tissue’, one (A) indicating cell area 
on a color scheme of blue (small) to yellow (large), and a 
second (B) representing the concurrent GTPase activity 
level from low (blue) to high (orange).

In contrast to the case of few cells, where 
 synchronized oscillations were observed over the 
entire population, we found that in the larger tissue, 
synchronization is limited to patches. We found that 
waves of contraction/relaxation and GTPase activity 
propagate throughout the tissue. This behavior can 
be seen in the successive snapshots in figures 7(A) 
and (B) and in supplementary movies 7A and 7B for 
the case of intermediate cell–cell adhesion. Bands of 
highly contracted cells (dark blue) are noteworthy 
in several panels in figure 7 (A), and coincides with 

interfaces between zones of high and low GTPase 
activity in figure 7(B).

The strength of cell–cell adhesion affects the 
strength of coupling and extent of synchronization. In 
the case of weak cell–cell adhesion (figures A12(A) and 
(B) and supplementary movies 12A and 12B), rela-
tively small patches are seen, and cells tend to detach 
from the periphery of the tissue. Waves of contraction 
and expansion are observed. As cell–cell adhesion is 
increased from the baseline simulation in figure 7, 
cells are more likely to favor adhering to each other. 
They then experience larger changes in area as one of 
their neighbors shrinks or grows. This results in nearly 
the entire tissue of cells expanding and contracting, 
though we still tend to see a wave of synchronization 
spreading from the center to the edge of the tissue, as 
in figure 8 and supplementary movie 8A. We conjec-
ture that the patch size (number of cells in a group with 
coordinated behavior) increases with the strength of 
cell–cell adhesion.

In our final CPM experiment, we considered the 
case that cells are heterogeneous, with a range of val-

(A)

(B)

Figure 7. Simulation of a 2D ‘tissue’ (N  =  373 cells) in the intermediate adhesion scenario using CompuCell3D [42]. Individual 
cells satisfy the minimal GTPase-tension model, with T ∝ (A − AT), where A is cell area, and AT is the target area. Cell-medium 
adhesion energy (80) is equal to cell–cell adhesion energy (80) in the Hamiltonian, H. In (A), cells are colored based on their  
current cell area, while in (B), cells are colored based on the uniform level of GTPase activity within each cell. Cells with smallest area 
(dark blue in (A)) are correlated with an interface between high (orange) and low (blue) GTPase activity in (B). Waves of  
contracting cells and relaxing cells are observed throughout patches in the tissue. See supplementary movies 7A and 7B. Parameters 
listed in appendix A.3 and A.5.
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(A)

(B)

Figure 8. As in figure 7 but for the strong adhesion scenario. Cell-medium adhesion energy (80) is greater than cell–cell adhesion 
energy (30) in the Hamiltonian, H. The entire tissue is synchronized. In (A), cells are colored by area, while in (B), cells are colored 
by GTPase activity. Notice that cells at the outer edge are first to expand/contract as they are less constrained by neighbors, so that 
expansion/contraction is ‘outside-in’. See supplementary movies 8A and 8B. Parameters are the same as in figure 7, and are listed in 
appendix A.3 and A.5.

Figure 9. As in figure 7(B), but with the parameter β (feedback strength from tension to GTPase activation) randomly chosen 
for each cell. Cells are colored by GTPase activity. Cells in steady state are forced to oscillate due to mechanical coupling with cells 
that are in the limit cycle regime. In this case, the baseline area parameter is increased to a0  =  600 (resulting in larger variation in 
cell area), and temperature parameter of Potts model T  =  15 is decreased from baseline. In the Hamiltonian, H, cell–cell adhesion 
energy is 60, and cell-medium adhesion energy is 80. Other parameters are as in appendix A.3 and A.5. See supplementary movie 9.
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ues of the feedback parameter β coupling mechanics 
to the GTPase activation. We simulated a large tissue, 
as before, but assigned randomly chosen values of β to 
the cells. Results are shown in figure 9 and supplemen-
tary movie 9. With the range of values of β, individual 
cells could be either contracted, oscillatory, or relaxed. 
Due to the presence of some oscillatory cells in the tis-
sue, those cells which would normally be quiescent at 
either relaxed or contracted steady-states, undergo 
oscillations due to pulling by oscillatory neighbors. We 
see patches of activity in the tissue that persist, though 
with a heterogenous GTPase activity. These forced 
oscillations are suggestive of a mechanism by which 
tissue dynamics can be driven by a few pace-maker 
cells, whose phenotype is oscillatory.

5. Rac and Rho GTPase model

We asked whether some of the lessons learned in our 
single-GTPase model would carry over to similar 
conclusions in a slightly expanded Rac-Rho GTPase 
circuit. It is well-known that Rac1 and RhoA are 
mutually inhibitory under many situations [31, 33, 37].  
Our analysis derives from the well-mixed variants 
of the Rac-Rho model described in [39], and in the 
melanoma-based modeling of [29]. In the latter case, 
coupling of front and rear compartments of a cell 
(through extracellular matrix signaling) was found to 
lead to the possibility of distinct behavioral regimes, 
including stable high Rho or Rac, or cycling between 
those levels. (Here the mechanical coupling has an 
effect similar to the ECM coupling in that paper.)

In the mutually inhibitory Rac-Rho model, the 
total level of Rac (Rho) GTPase, RT (ρT) is assumed 
to be roughly constant over the timescale of interest. 
Hence only the active forms of the GTPases need to be 
tracked. Assuming that each of Rho and Rac inhibits 

the activation of the other, we adopted the set of equa-
tions,

dR
dt

=
bR

1 + ρn
(RT − R)− δR, (5.1a)

dρ
dt

= (bρ + f (T))
1

1 + Rn
(ρT − ρ)− ρ, (5.1b)

where f (T) represents the activation of Rho GTPase by 
tension T.
Here we kept the assumption that Rho GTPase activity 
leads to cell contraction and the buildup of tension T, 
as before. Model equations and details are gathered in 
appendix A.7.

On its own, without feedback from mechan-
ics, the minimal Rac-Rho mutual inhibition model 
has a region of bistability, as shown in figure 10(A). 
As either the basal activation rates, bρ or bR, increase, 
the system transitions from a monostable state with 
either species at a high steady-state (and the other at 
a low steady-state) or from a coexistence state, into the 
bistable regime. We assumed, as before, that stretch-
ing a cell would increase the activation rate of RhoA. 
With that assumption, we find the same regimes of 
behavior as in the single GTPase model section 2.1. 
These three regimes of behavior depend on the 
strength of feedback from tension to Rho activation 
(a param eter denoted γρ). The dependence is shown 
in the bifurcation diagram in figure 10(B). For small 
γρ, the cell remains long and relaxed, with high lev-
els of Rac activity and low levels of Rho activity fig-
ure 11(A). For large γρ, the cell is contracted, (small 
L) with low levels of Rac activity and high levels of 
Rho activity as shown in  figure 11(C). For intermedi-
ate γρ, limit cycle oscillations arise as in figure 11(B). 
There is a regime of parameter space where a stable 
limit cycle and stable steady-state coexist (approxi-

Figure 10. Bifurcation diagrams for the minimal Rac-Rho model of equation (5.1). (A) On its own, the Rac-Rho model (with 
β = 0) exhibits bistability (inside red-bordered region) with respect to the activation rates bR and bρ. Mechanical tension affects 
the Rho GTPase activation rate, leading to the possibility of a relaxation oscillator by traversing the bistable region (grey arrows). 
(B) Bifurcation diagram for the coupled Rac-Rho-tension minimal model equation (5.1), showing how cell length L varies with 
the strength of coupling (γρ) of tension to Rho activation. L can be long (small γρ, solid black line), oscillatory (middle values of 
γρ, magenta curve), or short (large γρ, solid black line). As opposed to the single GTPase-tension model, it is possible for a stable 
limit cycle to coexist alongside a stable steady-state (for 12.29 ! γρ ! 15.61). Here, the red points correspond to saddle node (fold) 
bifurcations, and the black point to a Hopf bifurcation. Other parameters are bR  =  15, bρ = 5, RT = ρT = 4, δ = 1, n  =  p  =  3, 
γL = 0.75, ε = 0.1, α = 10, ρh = 1.
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mately 12.29 ! γρ ! 15.61). In this param eter regime, 
depending on initial conditions, the cell may either 
end up in the oscillatory regime, or at the contracted 
cell state.

In the above Rac-Rho model, we considered only 
coupling between mechanical tension and Rho activ-
ity, ignoring possible direct effects of mechanosensing 
on Rac activity. Rac is known to cause cell spreading via 
WASP/Arp2/3-based actin assembly, an effect that we 
had similarly omitted. To check the possible outcomes 
of such additional factors, we briefly explored several 
variants of the above default Rac-Rho-tension model. 
Specifically, we experimented with inclusion of (1) the 
effects of compression (as opposed to tension) sensing 
with feedback to Rac activation and (2) the effect of 
Rac activity on cell size, modeled as an increase in the 
rest-length L0. Feedback from mechanics to Rac activa-
tion can be interpreted as a change in bR in figure 10(A). 
This can push the underlying Rac-Rho signaling model 
into a regime of different behaviour—high Rac, bista-
bility, coexistence, or low Rac—and alter the resulting 
cell behaviour accordingly (in a mechanical feedback-
dependent manner). We observed behaviour similar 
to figure 11; albeit with Rac activity increasing the cell 
length and the relaxation oscillation arising from com-
pression instead of tension.

Aside from the above complementary 
 Rac-feedback-only model, we also experimented with 
mixed Rac and Rho feedbacks and antagonistic effects 
on cell size. We also considered feedback from tension 
and/or compression to GAPs as well as GEFs (inactiva-
tion versus activation terms in the GTPase equations). 
Overall, similar regimes of behaviour can be found in 
many such examples, within smaller or larger regions 
of parameter space. Cases of specific interest should 
henceforth be linked to specific biological examples 
where the mechanical coupling to known GEFs or 
GAPs is of interest.

6. Discussion

Feedback between biochemical signaling and 
mechanical forces plays a vital role in developmental 

biology and morphogenesis. A recent review [44] is 
complementary to our investigation, highlighting 
how diffusion-driven patterns, differential adhesion, 
buckling instabilities in growing layers, and flows in 
active materials (cytoskeleton and motor proteins) lead 
to patterning. Following the experimental work of [14], 
a single-cell model was also developed to describe the 
inhibition of cell polarization by membrane tension 
[45]. The authors used a more sophisticated spatio-
temporal model of the GTPases in a 2D cell (based on 
the idea of wave-pining [5]), its downstream effect on 
actin, and a cell boundary represented using the phase-
field method. The model accounted for observations on 
how build-up of tension in a neutrophil (by aspiration 
into a micropipette) and sudden release of tension (by 
severing a long cellular protrusion) affect the level and 
distribution of GTPase activity.

While the effect of tension on GTPase activity was 
studied previously [14, 15], to our knowledge, this is 
the first model that links GTPase-induced cell con-
traction to tension-induced GTPase activity in single 
cells and in a 1D and 2D tissue. Interestingly, a model 
based on mechanochemical coupling of some (inde-
terminate) signaling chemical and cell length that was 
studied mathematically and computationally decades 
ago [25] bears striking resemblance to our own. That 
previous model was aimed at understanding folding 
and invagination of epithelia, for example in the pro-
cess of gastrulation [26, 27]. It was shown then that 
a localized stimulus in one cell could result in active 
localized contraction in some neighborhood, creat-
ing the first fold in an early embryo. As GTPases and 
their effects were yet to be characterized, this prede-
cessor in the 1980s was theoretical, ahead of its time, 
and visionary. We have Odell and Oster, grand mas-
ters of Mathematical Biology, to thank for the inspira-
tion of the overall dynamical-systems and mechano-
chemical systems approach. More recently, single and 
collective cellular oscillations were accounted for by 
a generic oscillator model for turnover of force-pro-
ducing material (such as myosin motors) contracting 
against an elastic element [46]. Similar to our results, 
varying the mechanical and kinetic properties of the 

Figure 11. Dynamics of the model for a single cell with two GTPases (‘Rac1’ and ‘RhoA’) and feedback from tension to Rho 
activation. In (A), the feedback from tension (γρ = 10) is weak, and the cell remains large and relaxed (L ≈ 1) with high Rac and low 
Rho activities. In (B), the feedback (γρ = 14) is of intermediate strength, and limit cycle oscillations arise, provided that the initial 
conditions send the system to the stable limit cycle, instead of the contracted-cell steady-state (see figure 10). In (C), the coupling is 
so strong (γρ = 18) that RhoA activity is always high, Rac is low, and the cell stays in a contracted state (L ! 1). Parameters are as in 
figure 10.
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system can transition the cell behaviour from relaxed 
to oscillatory or contracted cell length and collective 
cell behaviour from unsynchronized to synchronized 
oscillations [46].

By coupling a simple GTPase bistable model (with-
out spatially distributed activity within a cell) to a sim-
ple elastic (Kelvin–Voigt element) cell, we were able to 
show three distinct regimes of behavior, including high 
and low GTPase activity, with coordinated cell tension, 
and persistent periodic cycling between those states. 
Here the dynamic pattern of contractile activity stems 
exclusively from cell size fluctuations, amplified by 
tension-dependent GTPase activity. We did not include 
chemical diffusion (each cell is assumed to hold a uni-
form GTPase level), nor explicit cytoskeletal flows.

Actual signaling networks are of forbidding com-
plexity, posing a significant challenge to our ability to 
understand how cell behavior emerges from underly-
ing components and properties. Large networks have 
been studied theoretically, e.g. by [47–49]. For example, 
a detailed Boolean logic model of EGFR signaling in a 
cell with tens of nodes (CellNetAnalyzer) also showed 
cyclic/oscillatory activity of Rac1 and RhoA [47]. This 
level of detail is appropriate for asking specific questions 
about drug-targets in a real system. And yet, given this 
level of detail, understanding the connection between 
network features and parameters on one hand, and 
emergent cell behavior on the other, is challenging. First, 
the details of rates, interconnectivity, and even topol-
ogy of the signaling networks are incompletely known. 
Second, even were we to simulate a topologically and 
quantitatively accurate copy of such networks, it would 
be very difficult to understand causal mech anisms due 
to combinatorial complexity. For this reason, stripped-
down models that concentrate on key topologies and 
regulators have a role to play in the theoretical under-
standing of cell behavior [50]. This principle motivates 
our analysis of small models for the GTPases.

Assumptions we made for the purpose of simplifi-
cation can be modified substantially without changing 
the overall conclusions. For example, while our equa-
tion for Rho activation resembles that of [15], their 
assumption about the Hill function-dependence on 
tension can be modified to another switch-like func-
tion that ‘turns on’ at some critical force magnitude. 
Furthermore, while there is so far evidence for the mul-
tiplicity of GEFs involved in mechanotransduction 
(relative to GAPs; see [17] table 1), our model works 
equally well with GAP-sensitive responses as with the 
GEF-based GTPase response assumed here.

One of our key findings here is that simple cou-
pling between GTPase activity and tension is consist-
ent with a range of biologically-relevant cell behavior. 
The simplest model already produces contracted or 
relaxed cells as well as cyclic fluctuations between these 
states. In the Rac-Rho circuit, such dynamic oscilla-
tory regimes coexist with static steady states (in the 
same parameter range), highlighting the dependence 
on stimuli and/or initial conditions. Oscillations in 

cell size are observed under laboratory conditions in 
epithelial monolayers [51, 52]. While the link between 
tension and GTPases may be just one factor operat-
ing in such systems, our model suggests experiments 
that could be used to test the connection. In par ticular, 
inhibitors of ROCK (that would abrogate the connec-
tion between RhoA and actomyosin contraction) or 
of Rac (that would inhibit the antagonism of Rac to 
Rho) could be used to test the effect on the presence, 
frequency, and synchrony of cell volume oscillations.

Hashimoto et al investigated the ‘zippering’ in the 
neural/epidermal boundary of the sea squirt (Ciona 
intestinalis) embryo, part of the process that sets up 
neurulation over a time frame of about 2 h [41]. Zip-
pering involves successive shortening of cellular junc-
tions, one after the other, in a unidirectional wave of 
contractions up the zippering axis. The contraction 
was shown to be powered by the localization of active 
myosin, along the boundary, and to be dependent on 
Rho/ROCK activity, based on its abrogation by blebbi-
statin and ROCK inhibitor (Y-27632) [41]. (Most 
dominant negative RhoA embryos failed to zipper.) 
The authors concluded that ‘local activation of acto-
myosin contractility by the RhoA/ROCK pathway at 
Ne/Epi junctions is required for junctional contrac-
tion, zippering, and neural tube closure’. Further-
more, their paper was accompanied by kinematic 
simulations that reproduced the sequence of con-
tractions, based on assigned tensions (for pre- and 
 post-contraction cells) and assigned time intervals.

Here we propose a simple model that aims at clos-
ing the gap between kinematics and dynamics. Briefly, 
we eschew the manual assignment of forces and time 
intervals, replacing these with a closed-loop chemical-
mechanical system that can give rise to the wave-like 
pattern of sequential cell contractions. As shown in 
 figure 5(D) and supplementary movie 4, under suita-
ble conditions, a unidirectional wave of Rho activation 
and actomyosin contraction can be exhibited by our 
elementary model. The Hashimoto et al experiments 
support the presence of the basic elements (RhoA/
ROCK activation and actomyosin contraction). That 
said, while our model could account for essential fea-
tures of a wave of contraction seen in zippering, it is 
clear that other aspects (such as communication 
between cells reaching across the ‘zipper’ sides) play 
vital roles not considered here (Edwin Munro, per-
sonal communication).

In other organisms, such as Drosophila, Rac GTPase 
is known to have multiple roles in early morphogen-
esis [53]. During Drosophila dorsal closure, over- and 
under-expressing Rac results in the excess assembly 
of lamellipodia or disrupts the assembly of an actin 
cable (and subsequent zippering) and cell protru-
sions. While GTPases such as Rac regulate cell behav-
ior during these morphogenetic processes, it is likely 
that cell and tissue mechanics also play an important 
role. Upstream mechanical signaling to Rho GTPases 
may occur as cells move and forces are transmitted, or 
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as cell–cell junctions are rearranged. In the case of zip-
pering in sea squirt embryos, or in Drosophila dorsal 
closure, further validation of the mechanisms and/
or completion of other essential elements remains as 
a future step. Nonetheless, with our mechanosensing 
assumptions, we have shown that feedback between 
signaling and mechanics can account for diverse sin-
gle and collective cell behavior in these morphogenetic 
processes. Extending the conceptual model here to 
specific organisms by connecting to GTPase signaling 
and cell mechanics to data from experiments remains a 
direction for future work.

We focused on cell size (expanded or contracted), 
but it is also of interest to consider how cell polariza-
tion is affected by mechanical cues in isolated cells and 
in cell collectives. See [54] for some theoretical back-
ground and review. Importantly, our results point to 
parameter regimes in which cells oscillate between 
compression and relaxation (in the case of a single 
Rho-like GTPase), or compression and stretching (for 
Rac-Rho). But it is known that such cyclic stretching 
can itself change the properties of cells, reorganizing 
stress-fibers, for example in a Rho-dependent man-
ner in endothelial cells [55]. It would be of interest to 
explore such polarity and directionality in future 2D 
models of this type, as well as to consider how the feed-
back between GTPases and tension operate in collec-
tive cell migration [56]. There is evidence that GTPases 
also affect the cell–cell adhesion [57, 58] and tight-
junctions [59], which would affect the coupling of 
mechanical transduction between cells in a tissue. This 

could be of interest in future models.
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Appendix. Numerical methods

Numerical integration of the single cell models and 
bifurcation analysis was preformed using PyDSTool 

[60]. Numerical integration of the single cell and 
multicellular models was preformed using MATLAB 
2017a (The MathWorks, Inc. Natick, Massachusetts, 
United States). Cellular Potts model simulations were 
produced with CompuCell3D [42].

A.1. Scaling the GTPase model
The dynamics of active GTPase are governed by the 
following differential equation:

dG
dt

=

(
b̂ + γ̂

Gn

Gn
0 + Gn

)
(GT − G)− δG. (A.1)

Here, ̂b is a basal activation rate, γ̂  gives the magnitude 
of the positive feedback upon the activation rate, and 
G0 describes the concentration of GTPase at which 
positive feedback reaches its half-maximal effect. 
GT  −  G gives the total concentration of inactive 
GTPase.

To reduce the size of parameter space, we scale 
GTPase concentration by the half-max quantity G0, 
and we scale time by the active GTPase residence time 
1/δ , respectively. The equations become

dG
dt

=

(
b + γ

Gn

1 + Gn

)
(GT − G)− G. (A.2)

The mechanical stimulus term f (T) was added to the 
activation rate, i.e. we assumed that it operates via 
a GEF. We considered several forms of mechanical 
feedback from cell deformation to GTPase activity. 
Based on the idea that the difference between the 
current cell ‘length’ L and the current cell ‘rest-length’ 
L0 creates the tension that stimulates mechanosensitive 
pathways, we can express that feedback in terms of L 
and L0. Consequently, we experimented with each of 
the following forms:

f0(L) = β(L − L0), Linear case;

f1(L) = β
Lm

Lm
0 + Lm

, Hill function;

f2(L) = β
1

1 + exp[α(L − L0)]
, Squashing function;

f3(L) = β
1

1 + exp
[
α (L−L0)

L0

] , Strain-dependent squashing function.

All four cases share the property that GTPase acti-
vation is amplified if L ! L0. The linear function f0 has 
the property that both stretching (L  >  L0) and com-
pression (L  <  L0) affect GTPase activation, albeit in 
opposite ways (stretching increases while compression 
decreases the GTPase activation rate.) The squashing 
function f2 is predominately unidirectional, i.e. only 
L  >  L0 has a significant effect, so stretching, but not 
compressing a cell affects its signaling. This function 
was used in our minimal model and has the advantage 
of specifically tracking tension. At the same time, f1 has 
a similar effect as f2, and was to a large extent indistin-
guishable in the dynamical results we obtained (see 
 figure A1(B) for a bifurcation diagram of the single-cell 
model with the Hill function response f1). The notice-
able difference occurs in the synchronization of large 
tissue simulations. Compare, for example, the simula-
tion with the squashing function f2 in figure 5(E) and 
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the simulation with the strain-dependent squashing 
function f3 in figure A1(C).

The Hill function and strain-dependent squash-
ing function, f1 and f3 have a similar shape for all L 
and L0 and are approximately equal for the param-
eters used herein. The change that f1 and f3 can affect 
in the GTPase activation rate is relative to the current 
rest-length of the cell L0. This is different from the 
squashing function f2, which assumes a mechanosens-
ing mechanism by which tension can activate GTPase 
signaling regardless of the current rest length, L0.

The Rac-Rho mutual inhibition model in section 5 
equation (5.1), is the scaled model. Details of this scal-
ing are similar to scaling for the single GTPase model. 
The reader is referred to [29, 39].

A.2. 1D methods: multicellular simulations
Equations (3.1) and (2.2a) were implemented in a 
collection of cells in 1D. Each cell has its own GTPase 
activity Gj, which is described by equation (2.2a), with 
lengths given by Lj = xn+1 − xj. Numerical integration 
was done using MATLAB 2017a (The MathWorks, 

Inc. Natick, Massachusetts, United States) for all 1D 
multicellular simulations.

For figures 5(A)–(C), (E), and (F), and A1(A) and 
(B), GTPase activity in each cell, Gj, affects the rest 
length through

Lj,0 = !0 − φ
G p

j

G p
h + G p

j

. (A.3)

Tension is assumed to affect the GTPase activation rate 
through the squashing function response to tension 
(  f2 above, also equation (2.2b)). Parameter values for 
these simulations are b  =  0.1, γ = 1.5, n  =  p  =  4, 
GT  =  2, α = 10, !0 = 1, φ = 0.75, Gh  =  0.3, 
k  =  1, λ = 10, and β varies. Initial conditions are 
Lj(0)  =  0.7 and Gj(0)  =  1 for the N  =  10 simulations, 
and random initial lengths with Gj(0)  =  1 for all 
simulations with N  >  10 and for the N  =  10 case with 
one oscillatory cell, figure A1. Instead of the squashing 
function response to tension (f2), the strain-dependent 
squashing function (f3) was used in figure A1(c).

For figure 5(D), we simulated N = 14 cells, and 
assumed linear responses for both GTPase-activation 
from tension (f0) and for rest-length from GTPase 
activity:

Lj,0 = !0 − φGj. (A.4)

Initial conditions for this simulation were Lj(0)  =  0.68, 
n = 1, . . . , 14, Gj(0)  =  0.45 for all j with the exception 
of, and Gj(0)  =  1.2 for j = 13, 14. Other parameters 
were b  =  0.3, β = 0.35, !0 = 1, φ = 0.7, n  =  4, 
GT  =  1.75, k  =  1, and λ = 10.

A.3. 2D methods: cellular Potts model
We use CompuCell3D, an open-source implementation 
of the cellular Potts model, for 2D simulations of the 
GTPase-tension model [42]. The cellular Potts model is 
an individual cell-based model where each cell occupies 
one or more discrete lattice sites. Cells can expand 
outwards or contract inwards by adding or removing 
lattice sites at the cell perimeter. The dynamics of each 

(A) (B) (C)

Figure A1. Additional 1D tissue dynamics result from mechanochemical interactions. Kymographs show the 1D position of each 
cell (vertical axis) with color indicating the GTPase activity within each cell. In (A), a single oscillatory cell with β = 0.2 can induce 
tissue-level oscillations among a population of contracted cells with β = 0.3. In (B), single cell dynamics with the Hill function 
response from tension, f1(T), qualitatively resemble the dynamics with the squashing function f2(T). In (C), waves of contraction 
propagate through the tissue of 50 oscillatory cells (β = 0.2) with the strain-dependent feedback, f3(T). See also supplementary 
movies 10 and 11, for (A) and (C) respectively.

Figure A2. CPM initial lattice configuration for nine 
oscillating cells with no mechanical coupling or adhesion 
and randomly chosen initial cell area and GTPase activity. 
Cells are colored by GTPase activity.
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‘cell’ is governed by a Hamiltonian energy function, H. 
The Hamiltonian for our 2D simulation consists of an 
area constraint term (also called volume deformation 
term in a general 3D context) and an adhesion energy 
term. The area constraint is implemented in terms of 
a (time-varying) target area. Target area represents the 
area (number of lattice sites) that each cell would occupy 
in an optimal lattice configuration. The adhesion 
energies specify the interactions between different cells 
and the surrounding medium (extra-cellular space, or 
‘medium’). Additionally, a connectivity constraint is 
imposed that penalizes the Hamiltonian if lattice sites 
for each cell do not form a connected domain. This 
avoids fragmentation of the ‘cells’.

Lattice sites are added or removed from cells in 
‘spin-copy attempts’. A spin-copy attempt is accepted 
if it decreases the overall energy of the system, as 
defined by the Hamiltonian. A spin-copy attempt is 
also accepted with a non-zero probability if it results in 
a small increase in the Hamiltonian. The temperature 
parameter in the Boltzmann distribution of accepted 
unfavourable spin-copies controls the degree of explo-
ration of energetically unfavourable lattice configura-
tions. Given N lattice sites, a collection of N spin-copy 
attempts constitutes one Monte-Carlo step (MCS) of 
the simulation. The Metropolis algorithm is used to 
determine the quasi-deterministic kinetics of lattice 
configurations evolving under the Hamiltonian. While 
CPM does not explicitly track forces, it has recently 
been shown to correspond to other vertex-based simu-
lations where forces are made explicit [43].

The target area for a cell is determined by a system of 
ODEs that couple sub-cellular biochemistry (assuming 
that the cell is well-mixed) to cell mechanics. To adapt 
the model to the technical requirements of the CPM, 

we had to select an appropriate timescale. We also had 
to create a dynamical equation for the target area.

1
τ

dG
dt

=

(
b + f (T) + γ

Gn

1 + Gn

)
(GT − G)− G,

 (A.5a)

1
τ

dAT

dt
= −ε(AT − A0(G)), where

A0(G) = a0

(
1 − φ

G p

G p
h + G p

)
.

 
(A.5b)

a0 is the constant baseline cell area. The target area AT 
approaches A0 on the timescale τ that we can control 

Figure A3. Time series of GTPase activity, Kuramoto order parameter and variance in phase for nine independent oscillators shown 
figure A2. Note that initial cell area is equal to initial cell target area, hence initial conditions are not fully randomized. Variance 
increases with time due to the stochastic nature of spin copy attempts that offset the initial conditions.

Figure A4. CPM initial lattice configuration for nine 
oscillating mechanically coupled cells with randomly 
chosen initial cell area and GTPase activity. Each lattice site 
can only be occupied by one cell and overlap is not allowed. 
Cell–cell and cell–medium adhesion parameters govern the 
mechanical interactions of the cells. Strength of adhesion 
between cells is higher if cell–cell adhesion energy is lower 
compared to cell–medium adhesion energy, and vice-versa. 
Cells are colored by GTPase activity.
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to increase or decrease the speed of the feedback. Note 
that cell area (A) does not approach target area (AT) 
instantaneously, but through the addition or removal 
of lattice sites over several MCS. That is, A, is updated 
stochastically to approach the target area AT by the 
CPM.

We also assumed

f (T) = β
Am

Am
T + Am

, where T = A − AT .

 (A.5c)

Here the tension is defined as T  =  (A  −  AT), which 
is a ‘delayed’ form of (A  −  A0). In turn, the function 
f (T), describes the feedback on GTPase activation 
from tension. This Hill function has the property that 
as m increases, its shape is fundamentally similar to 
that of the squashing function used in the 1D GTPase 
model in the main paper equation (2.2b). For this initial 
exploration, we assumed that GTPase activity was 
uniform inside a given cell (through variable across the 
entire collection of cells). This dramatically decreases 

Figure A5. Synchronized oscillations in the low adhesion regime in a simulation as in figure A4 over 1000 MCS. Cell–medium 
adhesion energy (40) is less than cell–cell adhesion energy (80) in the Hamlitonian H. Adhesion strength is low, which implies less 
entrainment/synchrony.

Figure A6. Synchronization in the intermediate adhesion regime. Cell–medium adhesion energy (80) is equal to cell–cell adhesion 
energy (80) in the Hamlitonian H.
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the complexity of the simulation. Stochasticity in the 
CPM leads to interesting behavior (e.g. stochastic 
switching) which is not observed in deterministic 
numerical solutions.

As before, we have assumed that increasing ten-
sion (represented as the difference between target 
area and actual cell area), can increase GTPase activ-
ity via equation (A.5c). To appropriately calibrate the 
model to observe the same oscillatory dynamics as in 
the one-cell single GTPase model, we chose the time-
scale and the time step for numerically integrating 
the ODEs, τ and ∆t, respectively, so that each MCS is 
τ∆t = 2000 · 0.001 = 2 units of time t.

In the case of single cells, the model parameters 
are τ = 2000, b  =  0.1, m  =  10, γ = 1.5, n  =  p  =  4, 
GT  =  2, ε = 0.1, a0  =  400, φ = 0.75, and Gh  =  0.3. Sin-

gle cell simulations ran for 250 MCS, with temper ature 
parameter 30. The cell–cell and cell-medium adhesion 
energies are set to 0.1 and 80 in the Hamiltonian H, 
respectively, and we did not impose a perimeter (sur-
face) constraint. The area constraint parameter in the 
Hamiltonian H was set to λA = 1 and initial conditions 
were set as G(0) = 1, AT(0)  =  320, and A(0) = 320.

A.4. 2D methods: patch size and synchronization
To explore the idea that adhesion strength could affect 
the extent of synchrony among the cells in the tissue, 
we varied the adhesion energy in the Hamiltonian H 
among a small tissue of nine cells, with each cell in the 
oscillatory regime. We treated the tissue as a system 
of coupled oscillators and numerically quantified 
the level of synchrony using the Kuramoto order 

Figure A7. Synchronization in the high adhesion regime. Cell–cell adhesion energy (60) is less than cell–medium adhesion energy 
(80) in the Hamlitonian H. This implies high degree of adhesion strength between cells, leading to entrainment.

Figure A8. Relaxed cell with low Rho GTPase activity, β = 0.05. Cells are colored by GTPase activity. Cell area, target area, and  
GTPase activity are plotted over time.
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parameter and the variance in the distribution of 
phase angles of the oscillators. The Kuramoto order 
parameter describes the degree of synchronization in 

a collection of coupled oscillators (see [61], or [62] 
for a review). As adhesion-strength increases, we find 
that the oscillators are more synchronized, with an 

Figure A9. Damped oscillations for β = 0.1. Cells are colored by GTPase activity. Cell area, target area, and GTPase activity  
are plotted over time.

Figure A10. Small amplitude limit cycle, β = 0.15. Cells are colored by GTPase activity. Cell area, target area, and GTPase activity  
are plotted over time.

Figure A11. Stochastic switching between low amplitude limit cycle and high amplitude limit cycle, β = 0.175. Cells are  
colored by GTPase activity. Cell area, target area, and GTPase activity are plotted over time.
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apparent increase in the Kuramoto order parameter, 
and a decrease in variance in the distribution of phase 
angles. See figures A3 and A5–A7.

To determine the Kuramoto order parameter for 
the small tissue, the dominant frequency of each oscil-
lating cell (i.e. frequency with highest magnitude) 
is determined over time using a sliding window with 
the real-valued Fourier transform (RFFT). The fixed 
size window contains time series data roughly equiva-
lent to 3 periods of oscillation. The Kuramoto order 
parameter and variance in phase is calculated by deter-
mining the phase corresponding to the dominant fre-
quency for all nine oscillators.

Model parameters are as in appendix A.3, except 
the initial conditions for cell areas are randomly cho-
sen, initial conditions for GTPase are randomly chosen 
between 0 and 1 and initial target area is also randomly 
chosen between 350 and 450.

A.5. 2D methods: large-tissue simulations
A circular tissue consisting of 373 cells with randomly 
chosen area (and β = 0.2, corresponding to the oscillatory 
regime) is used as the initial lattice configuration. Initial 
target area was set to the initial cell area for each cell 
(between 300 to 400 lattice sites). The simulation was 

carried out for 2000 MCS. Initial GTPase concentration is 
randomly chosen between 0 and 1. The remaining model 
parameters are as in appendix A.3.

A.6. Additional 2D results
In this section, some additional 2D CPM simulation 
results are presented. Model parameters are as before, 
outlined in appendix A.3. Each figure shows 8 snapshots 
of the cell behavior, with the color indicating the GTPase 
activity. Also shown are the cell area, target area, and the 
GTPase activity over time. These results include:

 (1)  Figure A8: a single relaxed cell with large 
constant area and low GTPase activity with 
β = 0.05.

 (2)  Figure A9: damped oscillations occur for 
β = 0.1.

 (3)  Figure A10: a small amplitude limit cycle with 
β = 0.15.

 (4)  Figure A11: stochastic switching between a 
low amplitude limit cycle and high amplitude 
limit cycle with β = 0.175.

Also, a large tissue simulation similar to figures 7 
and 8 but with weak adhesion is shown in figure A12.

(A)

(B)

Figure A12. As in figure 7 in the main paper, but in the weak adhesion scenario. In (A), cells are colored based on their current
cell area, while in (B), cells are colored based on the uniform level of GTPase activity within each cell. In the Hamiltonian, H, cell-
medium adhesion energy (60) is less than cell–cell adhesion energy (80). Notice that some cells detach from the tissue due to low 
adhesion strength. Patches of synchronized cell oscillations are still observed. See supplementary movies 12A and 12B.
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A.7. The Rac-Rho model
In our Rac-Rho model, we used the following system 
of equations:

dR
dt

=
bR

1 + ρn
(RT − R)− δR, (A.6a)

dρ
dt

= (bρ + f (T))
1

1 + Rn
(ρT − ρ)− ρ, (A.6b)

where f (T) models the activation of Rho GTPase by 
tension:

f (T) = γρ
1

1 + exp[−α(L − L0)]
, where T = L − L0.

 (A.6c)
As before, Rho GTPase activity decreases the rest-
length of the cell:

dL
dt

= −ε (L − L0) , where L0 = "0 − φ
ρ p

ρ p
h + ρ p

.

 (A.6d)
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