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Abstract Molecular motors such as kinesin and dynein are responsible for transport-
ing material along microtubule networks in cells. In many contexts, motor dynamics
can be modelled by a system of reaction–advection–diffusion partial differential equa-
tions (PDEs). Recently, quasi-steady-state (QSS)methods have been applied tomodels
with linear reactions to approximate the behaviour of the full PDE system. Here, we
extend this QSS reductionmethodology to certain nonlinear reactionmodels. TheQSS
method relies on the assumption that the nonlinear binding and unbinding interactions
of the cellular motors occur on a faster timescale than the spatial diffusion and advec-
tion processes. The full system dynamics are shown to be well approximated by the
dynamics on the slow manifold. The slow manifold is parametrized by a single scalar
quantity that satisfies a scalar nonlinear PDE, called the QSS PDE. We apply the QSS
method to several specific nonlinear models for the binding and unbinding of molec-
ular motors, and we use the resulting approximations to draw conclusions regarding
the parameter dependence of the spatial distribution of motors for these models.

Keywords Quasi-steady-state · Molecular motors · Intracellular transport ·
Nonlinear kinetics

1 Introduction

Diffusion is a fast transport mechanism on the length scale of a typical cell, a few tens
of micrometres. However, some specialized cells, including neurons, are up to 1m in
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length. This length scale imposes dramatic constraints on the transport of structural,
metabolic, and signalling components from the neuronal cell body (the soma) to the
ends of dendrites or axons. Molecular diffusion is extremely inefficient at such length
scales. Hence, cells have evolved active transport mechanisms consisting of molecular
motors that bind to microtubule tracks and convey cargo packaged in vesicles across
the cell (Chowdhury et al. 2005).

Microtubules (MTs) are asymmetric, having distinct “plus” and “minus” ends.
The two major types of molecular motors, kinesin and dynein, walk processively on
microtubules in opposite directions: kinesin walks towards the plus ends, while dynein
walks towards the minus ends of MTs. Both motors exist in several states, including
unbound, cytoplasmic forms (Blasius et al. 2013), and MT-bound (the focus of our
paper) as well as bound singly or in groups to cargo (not discussed here). The overall
traffic of motors across the cell depends on the polarity and configuration of MTs,
the rates of binding to and unbinding from MTs, and the motor speeds while bound.
Transport also depends on molecular diffusion in the cytosol. Some, but not all of
these factors can be experimentally observed in neurons, or in simpler model systems
such as filamentous fungi, where genetic and in vitro manipulations are far easier to
conduct.

One convenient experimental system is Ustilago maydis, a fungus whose long
filamentous hyphae containMTs ofmixed polarity (Fink and Steinberg 2006; Schuster
et al. 2011a, b; Steinberg 2011; Steinberg et al. 2001). Microtubules of mixed polarity
also occur in the proximal regions of neuronal dendrites (Baas et al. 1988;Burton 1988;
Stone et al. 2008). In these systems, particularly in the fungal hyphae, motors have
been observed to move bidirectionally: first towards one cell end and then towards the
opposite end. This observation can be explained in one of two ways. Either multiple
motors (dynein and kinesin) bound to the same cargo can “take turns” pulling the load,
or else a single motor, by detaching and binding to a MT of opposite polarity, would
then change its direction of motion. Here we consider the latter scenario.

One question that has intrigued modellers is how to bridge between the rates and
events at the molecular level (binding, unbinding, and motor speeds) and the overall
cargo distribution and effective transport speed at the cellular level (Shubeita 2012).
This has motivated the development of a number of mathematical models at various
levels of detail. A number of efforts have dealt with the tug-of-war or teamwork of
several motors attached to a single cargo (Bhat and Gopalakrishnan 2012; Hendricks
et al. 2010; Klumpp and Lipowsky 2005; Mallik et al. 2013; Müller et al. 2008). In
many cases, such models mandate stochastic and computational approaches, that con-
sider multiple states (n,m motors of distinct types attached to a cargo, etc.). Other
approaches simplify the problem to consider only a few states and formulate transport
equations (Smith and Simmons 2001) or derive such PDEs from a master-equation
approach to the stochastic motor behaviour. Examples of such approaches include (1)
an analysis and mean-field approximation of the dynamics of the totally asymmetric
simple exclusion process with Langmuir kinetics (Parmeggiani et al. 2004), (2) a study
of the spontaneous formation of traffic “jams” resulting from transport on two parallel
lanes (two parallel microtubule tracks) (Reichenbach et al. 2007), and (3) the incor-
poration of a kinetic model for motor stepping dynamics and a study of the resulting
effects on collective transport (Ciandrini et al. 2014). We follow the novel and elegant
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linear theory developed by Bressloff and Newby (2013) and Newby and Bressloff
(2010b) for important insights into motor function by deriving a quasi-steady-state
(QSS) Fokker–Planck equation from which the parameter dependence of the motor
distribution can be predicted, and by connecting molecular events to overall effective
diffusion and transport velocity. Although this linear theory is based on simplifications
and assumptions (e.g. that the binding/unbinding kinetics are fast on the timescale of
transport across the cell), it provides a useful way to gain insight into the role of various
parameters in determining the overall functionality of the transport system.

In recent work, Gou et al. (2014) used the PDE approach to model the trans-
port of early endosomes (cargo transported by kinesin and dynein) inside Ustilago
maydis, arriving at good agreement with experimental observations, and posing sev-
eral hypotheses for further experimental studies. A follow-up paper (Dauvergne and
Edelstein-Keshet 2015) applied the methods of Bressloff and Newby (2013) and
Newby and Bressloff (2010b) to the examples motivated by Gou et al. (2014). In
both these recent works, the models included microtubules of mixed polarity, with
and without a bias towards one end of the (1-D) cell, and linear rates of binding
and unbinding from the MT. Results in Dauvergne and Edelstein-Keshet (2015), for
example, demonstrate that the effective velocity of transport is the average of motor
velocities, weighted by the fraction of time spent in a given state, whereas the effective
diffusivity is similarly such an average, but includes an additional term that represents
a variance in velocities of motor in different states.

Linearity of the binding rates presumes that there is no interaction between groups
of motors and that binding sites are ample and unlimited. But in many biological
situations, such assumptions are unwarranted. Cases in which complicated, possibly
nonlinear, features have been observed are inmolecularmotor traffic jams (Leduc et al.
2012) and exclusion of onemotor by others (Schneider et al. 2006). Another case is the
effect ofmicrotubule-associated proteins (MAPS) such as tau thatmodulates the ability
of motors to bind to MTs or to stay bound (Dixit et al. 2008; McVicker et al. 2011).
MTs can also have various post-translational modifications that affect the availability
or affinity of binding sites to motors [for example, kinesin-1 binds with higher affinity
to MTs that have been modified by acetylation (Reed et al. 2006)]. Considering such
effects leads to models in which the binding or unbinding is nonlinear and saturating,
or to models that mass-action products terms that represent motor interactions. The
effect of spatially varying parameters resulting from non-homogeneous MT polarity,
ATPgradients, andMAPShas been investigated in the context of intracellular transport
in neuronal cells using quasi-steady-state methodology (Newby and Bressloff 2010a),
yet the effect of nonlinear kinetic terms has been largely unexplored analytically.
The need to generalize previous analysis to include models with such nonlinearities
motivates our approach in this paper.

Our main mathematical focus, discussed in detail in Sect. 3, is to extend the quasi-
steady-state (QSS) reduction method introduced in Newby and Bressloff (2010b) for
reaction–advection–diffusion systems with linear reaction kinetics to a class of prob-
lems where the kinetics are nonlinear, but where a conservation condition is satisfied.
The latter represents the fact that motors transit between states, but are conserved over-
all. The QSS method relies on the assumption that the nonlinear kinetics occur on a
faster timescale than the diffusion and advection processes. Owing to the conservation
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condition, in this limit of fast reaction kinetics, a one-parameter family of quasi-steady-
state solutions is obtained from the equilibrium state of the kinetics. When there are
no eigenvalues of the linearization of the kinetics along this one-parameter family that
lie in the unstable right half-plane, this quasi-steady-state solution is referred to as a
slow solution manifold for the full reaction–advection–diffusion system. When this
condition on the Jacobian of the nonlinear kinetics is satisfied, we use an asymptotic
expansion together with a Fredholm alternative condition to derive a single scalar
quasi-steady-state PDE, which effectively parameterizes the slow solution manifold.

In Sect. 4 we then apply the asymptotic formalism of Sect. 3 to analyse three spe-
cific three-component nonlinear systems for the binding and unbinding of molecular
motors. These three specific models are formulated in Sect. 2 and consist of (1) A
model for a single motor (“kinesin”) transiting between motion along right-pointing
MTs, diffusion in the cytosol, and motion along left-pointing MTs (with transitions
only through the cytoplasmic pool), (2) a model for kinesin–dynein-cargo complexes
moving left or right along MTs or diffusing in the cytosol (interactions on a MT
assumed to lead to motor swaps that also change the direction of motion), and (3) a
model for motors (“unconventional myosin”) whose encounters on an actin filament
lead to stalling. In all three cases, motors exchange between cytosolic diffusible states
and states bound to a track (MT or actin). Nonlinearity stems from saturated binding
kinetics in (1), mass-action motor interactions leading to swaps in (2), and to stalling
in (3).

Overall, our QSS PDE is used to analyse the behaviour of steady-state solutions of
the full reaction–advection–diffusion system as parameters are varied, and the results
are then interpreted biologically. The main conclusion is that in all three cases studied,
the resulting QSS PDE is a conservation law for the total density within the cell,
with effective velocity and effective diffusion that depend nonlinearly on the model
parameters and motor density. We make predictions about the full model behaviour
through the analytical insight gained through the QSS reduction, and the effective
velocity and effective diffusion functions. To verify our QSS method and analysis, we
use numerical simulations to study the steady-state and time-dependent behaviour of
both the full models and the QSS PDE. In particular, we use the MATLAB function
pdepe for time-dependent numerical simulations and also recast the steady-state QSS
PDE as a initial boundary value problem, which is amenable to numerical solution
with a shooting method (“Appendix C”).

In the kinesin motor model, the nonlinear interactions depend on the density of
cytosolic motors. The QSS PDE describes the bulk motor distribution through effec-
tive velocity and diffusion coefficients. These effective coefficients are related to the
original velocity and diffusion coefficients weighted by the time spent in the directed-
movement and random-movement states. Moreover, the polarity distribution of MTs
affects the bulk motor distribution by changing the sign of the velocity, which can bias
the distribution of motors to the right or left end of the cell.

Unlike the kinesin motor model, the nonlinear kinetics in the kinesin–dynein motor
complex model arise due to a mass-action law which describes the rate at which motor
complexes turn in response to motor complexes heading in the other direction. In
this case, the resulting QSS PDE is again a conservation law for the total amount of
motor complexes, with the advection speed dependent on the motor complex speed,
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the turning rate, and which motors in the complex are active. In addition to these
parameters, the resulting diffusion coefficient is dependent on the binding affinity of
the motor complex to MTs. We find that a sufficiently high turning rate can reverse
the distribution of motor complexes from one end of the cell to the other, even if the
probability of moving to one end of the cell is high.

In the myosin motor model, reaction kinetics that model the transition to the stalled
state result in two different QSS PDEs. In the first case, the motors equilibrate between
freely diffusing and walking on MT, without any motors in the stalled state. In the
second case, there are some motors in the stalled state. In the first case, the QSS
PDE is linear, with effective diffusion coefficient and effective velocity mediated by
the binding rate of myosin motors. We find that the asymptotic solution compares
favourably with full numerical simulations of the myosin model. In the second case,
the resulting QSS PDE is nonlinear, but is a conservation law for the total density of
myosinmotor. The effective transport rate depends on the density of stalledmotors, the
velocity of stalled motors due to actin treadmilling, and the stalling rate. The effective
rate of diffusion depends on all model parameters except for the velocity of stalled
motors due to treadmilling. The second QSS is only valid for a range of parameter
space and stalled motor density. Outside of this range, the QSS PDE is ill-posed. A
further novel feature of the myosin model is that the full system always converges to
the first QSS, where there are no stalled motors. Through a boundary layer analysis
(“Appendix D”), we determine that this results from the boundary conditions. We
suggest and study an alternate myosin model which has the same QSS approximations
but, depending on initial conditions, can realize either state.

The paper concludes with a brief discussion in Sect. 5.

2 Model Development

We model the cell as a 1-D tube of length L0, with its left end at x = 0. The densities
of motors are described as number per unit cell length, with the cross-sectional area of
the cell assumed to be constant. Molecular motors exist in any number, n, of possible
states within the cell, with pi (x, t) denoting the density of motors in state i .

Weuse a reaction–advection–diffusion system todescribe the evolutionof the vector
density p ≡ (p1, . . . , pn)T of motors as

∂p
∂t

= M(p) + f(p), (1)

where f ≡ ( f1, . . . , fn)T describes the state transition rates and M is a linear matrix
differential operator characterizing the advection and diffusion of motors in each
state. We assume that the ends of the cells are closed, and impose an overall zero-
flux condition at the cell ends. In addition, we assume that the motors are exchanged
between states in such a way that there is no net loss or gain of motors, i.e. that

n∑

i=1

fi = 0. (2)
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These two assumptions result in conservation of the total density of molecular motor
in the cell.

Our goal is to develop a theoretical framework to analyse models of the form (1)
where the reaction term f is nonlinear and occurs on a timescale that is fast relative
to the timescale of the advection and diffusion processes. This theory is then applied
to three specific nonlinear binding mechanisms. In Sects. 2.1 and 4.1 we consider
a nonlinear kinesin model; in Sects. 2.2 and 4.2 we consider a nonlinear kinesin–
dynein model; while in Sects. 2.3 and 4.3 we consider a nonlinear myosin model. Our
analysis extends the previous analysis for linear bindingmodels developed in Bressloff
and Newby (2013), Dauvergne and Edelstein-Keshet (2015) and Newby and Bressloff
(2010b) to allow for nonlinear binding mechanisms.

2.1 Kinesin Model

In hyphae of the fungus, Ustilago maydis, for example, kinesin motors walk along
microtubules within the cell or diffuse freely in the cytosol (Dauvergne and Edelstein-
Keshet 2015; Gou et al. 2014; Schuster et al. 2011a, b; Steinberg 2011). The density
pR(x, t) [respectively, pL(x, t)] represents the population of kinesin bound to right-
polarized (respectively, left-polarized) MTs walking towards the end of the cell at
x = L0 (respectively, x = 0). The population of freely diffusing cytosolic kinesin is
modelled by the density pU(x, t) (U for unbound). Inside this 1-D domain, 0 ≤ x ≤
L0, the microtubule distribution is described by 0 ≤ P(x) ≤ 1, which represents the
fraction of MTs pointing to the right at a point x . Since kinesin always walks towards
a MT plus end, it can reverse its direction of motion only by unbinding from a given
MT and rebinding to a MT of opposite polarity. For this reason, we can assume that,
in this model, motor transitions occur only through the cytosolic state. We describe
the spatiotemporal evolution of the kinesin densities by the transport equations (see
the schematic diagram in Fig. 1):

Fig. 1 A schematic diagram of kinesin-based intracellular transport in a 1-D cell of length L0. Kinesin
motors can bind to polarized microtubules (MTs, blue arrows) and move to the right (purple circles with
right-pointing arrows) or to the left (green circleswith left-pointing arrows).While unbound, kinesinmotors
are free to diffuse in the cell’s cytoplasm (red circles with right- and left-pointing arrows). State transitions
(orange dashed arrows) occur through the freely diffusing cytosolic state (Color figure online)
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∂pR

∂t
= −v

∂pR

∂x
+ Pkbg(p

U) − ku p
R, (3a)

∂pL

∂t
= v

∂pL

∂x
+ (1 − P)kbg(p

U) − ku p
L, (3b)

∂pU

∂t
= D0

∂2 pU

∂x2
− kbg(p

U) + ku p
R + ku p

L. (3c)

In Eqs. (3), bound kinesin moves to the right or to the left with velocity v, and
D0 is the diffusion coefficient for cytosolic kinesin. The unbinding rate is ku, while
the binding rates for kinesin binding to right-polarized and left-polarized MTs are
kbPg(pU) and kb(1 − P)g(pU), respectively. Here, P = P(x) is the fraction of
MTs polarized towards the right in the cell. Here we have assumed a constant density
of MTs across the cell (absorbed into the constant kb). We discuss a generalization
to non-uniform MT density m(x) in “Appendix A.1”. The function g(pU), possibly
nonlinear, describes how other processes such as competition for binding sites or
binding cooperativity are modelled. For instance, saturated binding due to a limited
number of binding sites could be depicted by a term of the form

g(pU) = gm
pU

K + pU
, (4)

for someparameters K > 0 and gm > 0 [forms such as (4) are obtained by assumptions
typical of Michaelis–Menten kinetics]. Conservation of the kinesin motors within the
cell implies that zero-flux boundary conditions are required to model the impermeable
cell ends:

(
vpR − vpL − D0

∂pU

∂x

)∣∣∣∣
x=0,L0

= 0. (5)

The two additional boundary conditions are that there is no right-moving kinesin at
the left endpoint of the cell and no left-moving kinesin at the right endpoint. These
boundary conditions result from the fact that to create a flux of right-moving kinesin at
a given point, there had to be a kinesin bound to aMT to the left of that point—which is
impossible at x = 0, the leftmost point in the cell. A similar argument at the rightmost
point in the cell establishes the right endpoint. Thus, we require that the following two
Dirichlet conditions hold:

vpR(0) = 0 and vpL(L0) = 0. (6)

2.2 Kinesin–Dynein Model

The three-state kinesin model, formulated in Sect. 2.1, is a simplification of intracel-
lular cargo transport. Cargo in fungal hyphae is typically bound to one dynein and
four or five kinesin motors at a time (Schuster et al. 2011a). In this case, the entire
kinesin–dynein-cargo complex may be transported towards or away from the cell tip,
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depending on which motors are actively involved in the transport process and the
polarity of the MTs to which they are bound. We now describe a simple model for the
organization and transport of cargo bound to a kinesin–dynein motor complex.

The populations of kinesin–dynein-cargo complexes are divided into right-moving,
left-moving, and freely diffusing subclasses, regardless of the molecular motors active
in the transport process. In the three-state kinesin model, the nonlinearities were
restricted to binding and unbinding interactions. To explore the effect of nonlinear
interactions between motors in distinct subclasses, we now consider linear binding
and unbinding interactions, but allow for a nonlinear interaction term between the
right- and left-moving species when they are in proximity on a MT. We seek to apply
our QSS theory to a model of this type, as Yochelis and Gov (2016) have recently used
a model with a similar nonlinear interaction to describe the spatial organization and
dynamics of unconventional myosin motors in actin-based protrusions.

The population of right-moving (respectively, left-moving) motor complexes walk-
ing towards the end of the cell at x = L0 (respectively, x = 0) is described by density
pR(x, t) (respectively, pL(x, t)). The population of freely diffusing cytosolic motor
complexes is described by density pU(x, t). Here we define a “binding bias” function,
Q, that represents the probability that when a free motor complex binds to a MT, it
becomes a right-moving motor complex. Then (assuming no stalled states on the MT)
the probability of becoming a left-moving motor complex, upon binding to a MT, is
(1 − Q). Since kinesin walks towards the plus ends, while dynein walks towards the
minus ends, of MTs, the function Q(x) actually comprises several biological quanti-
ties, including local MT polarity, ratio of kinesin to dynein molecules in a complex, as
well as respective affinities toMTs of these twomotors. In “Appendix A.2” we discuss
how this simplification by a single function can be related to such biological factors.
An important distinction between this and the previous model is that now direction
switching can take place on a MT and does not require unbinding into the cytosol.

The above simplification allows for the detailed study of a nonlinear interaction
between right- and left-moving populations. We assume that when a right-moving
complex meets a left-moving complex, the right-moving complex changes direction
with rate krl. Similarly,when a left-moving complexmeets a right-moving complex, the
right-moving complex changes directionwith rate klr. (These direction changes are due
to a swap between a motor that is actively walking, e.g. dynein, and its passive partner
motor kinesin, or vice versa, in the given complex.) Freely diffusing motor complex
binds toMTs at rate kb and diffuses in the cytosol with diffusion coefficient D0. Bound
motor complexes can move to the right (or left) with velocity vr (or vl), or they can
unbind from MTs with rate ku. These assumptions lead to the following reaction–
advection–diffusion system on 0 ≤ x ≤ L0 (see the schematic diagram in Fig. 2):

∂pR

∂t
= −vr

∂pR

∂x
+ kbQpU − ku p

R − krl p
R pL + klr p

L pR, (7a)

∂pL

∂t
= vl

∂pL

∂x
+ kb(1 − Q)pU − ku p

L + krl p
R pL − klr p

L pR, (7b)

∂pU

∂t
= D0

∂2 pU

∂x2
− kb p

U + ku(p
R + pL). (7c)
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Fig. 2 As in Fig. 1 but for the kinesin–dynein motor complexes. Colour code as before for MT, and for
left- or right-moving or diffusing complexes. A new feature is that state transitions can also occur through
the collision of a left- and right-moving motor complex (orange dashed arrows, right) (Color figure online)

If we define kc ≡ krl − klr, this model can be written as

∂pR

∂t
= −vr

∂pR

∂x
+ kbQpU − ku p

R − kc p
R pL, (8a)

∂pL

∂t
= vl

∂pL

∂x
+ kb(1 − Q)pU − ku p

L + kc p
R pL, (8b)

∂pU

∂t
= D0

∂2 pU

∂x2
− kb p

U + ku(p
R + pL). (8c)

Conservation of the motor complexes within the cell implies that zero-flux boundary
conditions are required to model the impermeable cell ends:

(
vr p

R − vl p
L − D0

∂pU

∂x

)∣∣∣∣
x=0,L0

= 0. (9)

The remaining two boundary conditions are that

vr p
R(0) = 0 and vl p

L(L0) = 0. (10)

2.3 Myosin Model

Like kinesin and dynein motors, unconventional myosin motors are also responsible
for intracellular transport in actin-based cellular protrusions, such as filopodia and
stereocilia (Nambiar et al. 2010). Filopodia are long, thin cellular protrusions with
actin filaments at their core. These structures are involved in cell motility, adhesion,
and communication (Mattila and Lappalainen 2008). Stereocilia are highly organized
protrusions on hair-cells of the inner ear, responsible for hearing (Schwander et al.
2010). The actin-based filamentous scaffold that supports these protrusions is known
to undergo turnover, which is maintained by the delivery of new actin monomer sub-
units to the distal ends of the protrusions, and the disassembly of the actin bundle at
its base (Rzadzinska et al. 2004). (The apparent motion of the actin filament bundle
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due to continual assembly and disassembly at opposite ends is called treadmilling.)
The transport of those monomers and other materials is facilitated by unconventional
myosin motors (Nambiar et al. 2010). In Yochelis and Gov (2016) and Yochelis
et al. (2015), a reaction–advection–diffusion model was employed to describe the
self-organization of waves and pulse trains in myosin motor distribution along cell
protrusions. Inspired by their model, we consider a simplified system with the same
nonlinear cross-species interaction term to demonstrate that the QSS method can be
applied.

We consider three populations of myosin motors: bound (pB), walking (pW), and
unbound or freely diffusing (pU) in a 1-D geometry. We suppose that the base of
the protrusion of length L0 is at x = 0, but assume that the protrusion is self-
contained and impose zero total flux boundary conditions at both ends. Adapted
from Yochelis and Gov (2016) and Yochelis et al. (2015), the myosin dynamics
are described by the following set of reaction–advection–diffusion equations on
0 ≤ x ≤ L0:

∂pW

∂t
= −vw

∂pW

∂x
− k̂bw

(
pB

)2
pW + k̂b p

U − ku p
W, (11a)

∂pB

∂t
= vb

∂pB

∂x
+ k̂bw

(
pB

)2
pW − ku p

B, (11b)

∂pU

∂t
= Df

∂2 pU

∂x2
− k̂b p

U + ku(p
B + pW). (11c)

Due to actin treadmilling, bound (stalled) motors are effectively transported towards
the base of the actin bundle with the treadmilling velocity vb. Bound motors unbind
with rate ku andwalkingmotors can become bound if they encounter a sufficiently high
density of bound motors (k̂bw

(
pB

)2
pW). Walking motors, on the other hand, move

to the distal end of the cell protrusion with velocity vw. Walking motors may also
unbind to become freely diffusing motors. The freely diffusing motors have diffusion
coefficient Df and can reattach to an actin filament and transition to a walking motor
with rate k̂b.

We assume that the total flux of myosin is zero at either end of the protrusion, which
gives the boundary condition

(
vw p

W − vb p
B − Df

∂pU

∂x

)∣∣∣∣
x=0,L0

= 0. (12)

As before, we also have two additional boundary conditions

vw p
W(0) = 0 and vb p

B(L0) = 0, (13)

which ensures that there is no right-moving and left-moving myosin at the left and
right endpoints, respectively.
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3 Quasi-Steady-State Reduction

The quasi-steady-state (QSS) reduction method, developed in Bressloff and Newby
(2013) for the case where the vector f of state transitions is linear, will be extended
to allow for nonlinear f . In this asymptotic approach, the key assumption is that
the timescale associated with transitions between states, represented by binding and
unbinding mechanisms, is short relative to the time it takes for motors to move across
the cell. This introduces a small parameter ε ≈ v/(L0k), where v is themotor velocity,
L0 is the cell length, and k is a typical transition rate.

Using the QSS approximation, we aim to reduce the system of transport equations
to a scalar nonlinear PDE describing the dynamics of the system for small ε. To this
end, we rescale space and time so that the length of the cell is L0 = 1 and so that one
of the motor subpopulations moves with speed vi = 1. We scale distance by the cell
length; we scale time by the time it takes for a walking motor to move across the cell.
That is, we introduce

x� = x

L0
, t� = tvi

L0
. (14)

Under this scaling, and with the assumption that the timescale associated with transi-
tions between states is short, we can write the system (1), upon dropping the starred
coordinates, as

∂p
∂t

= M(p) + 1

ε
f(p), (15)

where f(p) represents the O(1) nonlinear motor state transition kinetics. Here M is
the linear n × n matrix differential operator in the rescaled coordinates, with zero off-
diagonal entries, so that Mi j = 0 for i �= j , and diagonal entries Mi i = −vi∂/∂x +
Di∂

2/∂x2 for i = 1, . . . , n, with vi possibly not all unity if the right- and left-moving
motors have different speeds.Details of the scaling leading to (15) for our three specific
systems are given in “Appendix A.2”.

The QSS reduction method exploits the assumed small parameter ε in (15). On a
short timescale, where t = O(ε) so that τ = t/ε, (15) yields

∂p
∂τ

= f(p) + O(ε). (16)

Ignoring O(ε) terms, this nonlinear ODE system describes the well-mixed dynamics
to leading-order on a short timescale. We define the quasi-steady-state, p0, of (15) to
be the steady-state of this well-mixed system, i.e. f(p0) = 0. For a general nonlinear
function f , a solution to f(p0) = 0 is not guaranteed. We will restrict attention to f
such that (16) has a steady-state solution. However, due to the conservation (2) of
motors within the cell, to solve f1(p0) = · · · = fn(p0) = 0, it suffices to solve the
under-determined algebraic system f1(p0) = · · · = fn−1(p0) = 0. From this, we
automatically find fn(p0) = 0. As such, generically, when a steady-state exists it can
be written parametrically as p0 = p0(α) in terms of some scalar quantity α = α(x, t).
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As there may be more than one solution to f(p0) = 0, in order to ensure that we have
found the steady-state to which the system (15) can converge, we need to introduce
the following concept of the slow manifold:

Definition 3.1 Let p0(α) be a solution to f1 = · · · = fn−1 = 0. Then p0(α) is a slow
manifold of (15) provided that the Jacobian matrix

J = J(α) ≡
⎛

⎜⎝
f1p1 ... f1pn
...

. . .
...

fnp1 ... fnpn

⎞

⎟⎠

∣∣∣∣∣∣∣
p=p0(α)

, (17)

has all eigenvalues satisfying �(λ) ≤ 0 for all α on the range of definition. Moreover,
λ = 0 is always an eigenvalue of J for any α, i.e. Jφ = 0 for some φ �= 0.

To motivate the need for such a criterion, we introduce the new timescale τ = t/ε,
so that (15) reduces to leading-order to

∂p
∂τ

= f(p). (18)

In order for the ODE dynamics (18) to have the limiting behaviour

lim
τ→∞ p(τ ) = p0(α0), (19)

at least for initial conditions near the slow manifold p0, where α0 is determined by
the initial condition, we must ensure that the eigenvalues of the Jacobian J(α) satisfy
�(λ) ≤ 0 for all values of α. By differentiating

f(p0(α)) = 0,

with respect to α, we readily observe that J must always have a zero eigenvalue, i.e.
that

Jφ = 0, where φ = dp0

dα
(α). (20)

We must therefore ensure that the remaining eigenvalues of J(α) satisfy Re(λ) < 0.
This leads to our key assumption on the nonlinearity f .

Assumption 3.2 We assume that the vector f of state transitions is such that there is
exactly one solution branch p0(α) to f = 0 for which the condition on the Jacobian J in
Definition 3.1 holds. Further, we assume that the zero eigenvalue of J has multiplicity
one for any α on its range of definition.

With this assumption, we now show how to derive a nonlinear PDE for the evolution
of α(x, t) in the quasi-steady-state p0(α). To do so, we expand p as a series in ε about
the quasi-steady-state as

p = p0(α) + εp1 + · · · . (21)
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Upon substituting this expansion into (15) we obtain that

p0
t + εp1

t + · · · = 1

ε
f(p0 + εp1) + Mp0 + εMp1 + · · · . (22)

By using a Taylor expansion for the nonlinear term, together with the fact that f(p0) =
0, we obtain upon equating the O(1) terms that

Jp1 = p0
t − Mp0. (23)

ByAssumption 3.2,wehave the existence of a unique (up to scalarmultiple)φ such that
Jφ = 0. Since the eigenvalues of J and JT are identical, λ = 0 is also an eigenvalue of
JT ofmultiplicity one. This guarantees the existence of a unique (up to scalar multiple)
ψ such that ψT J = 0T . In fact, we readily identify that ψ = (1, . . . , 1)T , as a result
of the fact that (2) holds. From the Fredholm alternative, a solution to (23) exists if
and only if ψT (p0

t − Mp0) = 0. This solvability condition yields

ψT p0
t = ψT Mp0, (24a)

which is a scalar nonlinear PDE for α(x, t). This PDE (24a) for α(x, t) is called
the QSS PDE, and the boundary conditions for α can be readily obtained from a
conservation condition (see the examples in Sects. 4.1, 4.2, 4.3 below). In terms of
α(x, t), the leading-order asymptotics

p ∼ p0(α(x, t)) + O(ε), (24b)

then provides an approximate solution to the full system (15) when t = O(1) and
away from any boundary layers near the endpoints x = 0, 1. The system (24b) is
supplemented by appropriate boundary conditions (BCs). For the three-component
molecular motors systems of Sect. 4, we present appropriate BCs below and carry out
a boundary layer analysis in “Appendix D”.

We remark that for the case where f is linear, as studied in Newby and Bressloff
(2010b) and Dauvergne and Edelstein-Keshet (2015), the O(ε) term in (24b) can be
calculated explicitly. However, in our extension of the theory to allow for a nonlinear
f , it is in general analytically intractable to calculate this correction term.

4 Examples of the QSS Theory

We now apply our QSS reduction method to the molecular motor models that were
described in Sect. 2.
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4.1 QSS Reduction: Kinesin Model

As shown in “Appendix B.3”, the kinesin model (3) of Sect. 2.1 can be scaled to a
system of the form (15) where

p =
⎛

⎝
pR

pL

pU

⎞

⎠ , f(p) =
⎛

⎝
kaP(x)g(pU) − pR

ka(1 − P(x))g(pU) − pL

−kag(pU) + pR + pL

⎞

⎠ ,

M =
⎛

⎜⎝
− ∂

∂x 0 0
0 ∂

∂x 0

0 0 D ∂2

∂x2

⎞

⎟⎠ , (25)

where D and ε are defined in (82), while ka is defined in (78) if g is linear and in (82)
if g is either a Hill or Michaelis–Menton nonlinearity. The parameter ka involves the
ratio kb/ku. For the case of unbiased MT distribution (P = 0.5) and linear binding
function g, we have, simply, ka = kb/ku, which represents the ratio of time spent
in the unbound (diffusive) state to the time spent in the bound state (directed motor
motion on MTs). As shown in (82), if g is nonlinear, then that ratio gets modified by
the saturation factor, favouring the unbound residence time due to a limited number
of binding sites.

Following themethod described in Sect. 3, we first find the quasi-steady-state p0(α)

from the condition that f = 0. We set f1 = f2 = 0 in (25) to get

pR = P(x)kag(p
U), pL = (1 − P(x)) kag(p

U), (26)

which are two nonlinear equations in three unknowns. It is convenient to parameterize
the free variable by a scalar, and we set pU = α. This gives the quasi-steady-state
solution branch as

p0(α) =
⎛

⎝
P(x)kag(α)

(1 − P(x))kag(α)

α

⎞

⎠ , (27)

where the parameter α = α(x, t) is the unknown cytosolic motor density. A simple
calculation of the Jacobian J in Definition 3.1 shows that J has the eigenvalues

λ = 0, λ = −1, λ = −1 − kag
′(α). (28)

Therefore, a sufficient condition for p0 to be a slow manifold in the sense of Defini-
tion 3.1 is that g is a monotonically increasing function. This makes sense and implies
that the rate of motors binding to MT increases with the cytosolic motor concentra-
tion: the more motors are in the cytosol, the more binding can take place (increasing,
possibly up to some saturation level).
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To derive the QSS PDE for α(x, t), we use the solvability condition (24), which
yields that

(1, 1, 1)
∂

∂t

⎛

⎝
P(x)kag(α)

(1 − P(x))kag(α)

α

⎞

⎠ = (1, 1, 1)M

⎛

⎝
P(x)kag(α)

(1 − P(x))kag(α)

α

⎞

⎠ .

By using (25) for the matrix differential operator M, this expression reduces to

∂

∂t
(kag(α) + α) = − ∂

∂x
(P(x)kag(α)) + ∂

∂x
((1 − P(x))kag(α)) + D

∂2α

∂x2
,

which yields the QSS PDE

∂

∂t
(kag(α) + α) = ∂

∂x

(
D

∂α

∂x
− (2P(x) − 1)kag(α)

)
. (29)

As shown in (108) of “Appendix D”, to determine the boundary conditions for (29),
we need only substitute (21) into the original boundary conditions (5) and retain terms
up to O(ε). This leads to

(
D

∂α

∂x
− (2P(x) − 1)kag(α)

)∣∣∣∣
x=0,1

= 0, (30)

which we identify as zero-flux boundary conditions for the QSS PDE (29). Moreover,
by integrating the PDE (29) across the domain, and using the boundary conditions,
we identify the QSS PDE as a conservation law for the total density of kinesin
motors:

∂

∂t

∫ 1

0
y(x, t) dx = ∂

∂t

∫ 1

0
(kag(α) + α) dx = 0, (31)

where, with e ≡ (1, . . . , 1)T , we have defined

y(x, t) ≡ eT p0(α(x, t)) = kag(α(x, t)) + α(x, t), (32)

as the total density of kinesin motor in any state at (x, t). Therefore, from (31), we
have

∫ 1
0 y(x, t) dx = ∫ 1

0 y(x, 0) dx .
The QSS PDE (29) describes the bulk behaviour of cytosolic motors, pU = α,

throughout the cell, but any from any boundary layers near the domain endpoints,
when ε � 1. In terms of α, we can use (27) in (24b) to determine the behaviour
of the densities of right- and left-moving kinesin motors in the bulk region away
from any boundary layers near either x = 0 or x = 1. The boundary layer
analysis, given in “Appendix D”, and summarized in (113) for the kinesin model,
shows that the right-moving and left-moving motors have a classic boundary layer
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structure near x = 0 and x = 1, respectively, with a boundary layer width
of O(ε).

In the case where P(x) = P is constant, the QSS PDE (29) reduces to

∂α

∂t
= V (α)

∂α

∂x
+ D(α)

∂2α

∂x2
, (33a)

where the effective velocityV (α) and effective diffusion coefficientsD(α) are defined
by

V (α) ≡ (1 − 2P)kag′(α)

kag′(α) + 1
, and D(α) ≡ D

kag′(α) + 1
. (33b)

If P(x) is a smooth spatially varying function, then an additional nonlinear source
term in α, proportional to P ′(x), would appear in (33a).

For a general g(α), we can use the QSS PDE (33) to make predictions regarding the
bulk behaviour of the motors within the cell. The effective velocity and effective diffu-
sion coefficientsV (α) andD(α) are velocity anddiffusion coefficientsweighted by the
fraction of time spent in directed (motor) and random (diffusive) motion, respectively.
These effective velocity and diffusion coefficients depend on the model parameters as
follows.

A bias in the MT polarity proportion, P , results in a corresponding bias in the
effective velocity V (α), in such a way that V (α) is positive when P > 1

2 and is
negative when P < 1

2 . Although α represents the density of cytosolic motors, it
influences the behaviour in the other states due to the assumption of rapid transitions
between states. This bias agrees with the intuition that in areas where more MTs are
biased to the right, more motors will be directed towards the right end of the cell.
When the MT polarity is unbiased, i.e. P = 1

2 , then the QSS PDE (33) reduces, as
expected, to a nonlinear diffusion equation with no advection.

In addition, when g(α) is monotone increasing, V (α) is a saturating function of
ka and D(α) is a saturating function of 1/ka. Increasing kb, which corresponds to
increasing ka, increases the effective velocity V (α), while decreasing the effective
diffusion coefficient D(α). Similarly, increasing ku, which decreases ka, causes an
increase in the effective diffusion, but decreases the effective velocity. In themolecular
motor system when kb � ku, so that ka � 1, we expect advective processes to
dominate over diffusion as motors spend more time being transported on MTs than
diffusing in the cytosol. Conversely,when ku � kb, so that ka � 1,we expect diffusion
to dominate over advective processes, as the motors spend less time walking on MTs
than diffusing in the cytosol. The parameter dependence of V (α) and D(α) on ka in
the QSS PDE (33) reflects this trade-off.

In the following subsections, wewill explore how specific choices of the interaction
function g(α) and the MT polarity P(x) affect the QSS PDE, and further explore the
parameter dependencies discussed briefly above.
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4.1.1 Saturated Binding Model

We now study the kinesin model with a saturated binding rate, where we take

g(α) ≡ α

1 + cα
. (34)

This choice models the basic Michaelis–Menten biochemical kinetics with 1/c repre-
senting the motor density at which the binding rate is 1/2 of its maximal magnitude.
This choice of g represents the idea that binding sites onMTs are limited. As cytosolic
motor density α increases, those MT sites become saturated so that g → 1. When
c = 0, the binding rate is linear and the model reduces to that studied in Dauvergne
and Edelstein-Keshet (2015).

From (27), the quasi-steady-state p0(α) for this saturated binding kinesin model
with constant polarity P is

p0(α) =
⎛

⎜⎝
P kaα

(1+cα)

(1 − P) kaα
(1+cα)

α

⎞

⎟⎠ . (35)

Since g(α) is monotone increasing, the condition in Definition 3.1 holds, and p0(α)

is a slow manifold. Therefore, from (29), the QSS PDE for α(x, t) reduces to

∂

∂t

(
kaα

(1 + cα)
+ α

)
= ∂

∂x

(
D

∂α

∂x
− (2P − 1)

kaα

(1 + cα)

)
. (36)

Using (30), and as shown in (108) of “AppendixD”, this QSSPDE inherits its zero-flux
boundary conditions from the full system as

D
∂α

∂x
− (2P − 1)

kaα

(1 + cα)
= 0, at x = 0, 1. (37)

We compare the QSS approximation with numerical approximations of the full
kinesin model (15) with (25) and (34). For a correct comparison, the initial condition
α(x, 0) = α0 needs to be chosen such that the total density y is the same for the full
system and the QSS PDE. Conservation of mass with the initial condition pR = 0,
pL = 0 and pU = 1 at t = 0 for the full system implies that

∫ 1

0

(
pR(x, t) + pL(x, t) + pU(x, t)

)
dx = 1, (38)

for all t . Recall that the QSS PDE is a conservation law for

y(x, t) = eT p0(α(x, t)) = kag(α) + α, (39)
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which is the total density of kinesin in the cell. Therefore, one correct initial condition
is to choose α0 to be the unique root of

y(x, 0) = kag(α0) + α0 = 1. (40)

The steady-state solution α(x) of the QSS PDE (36) is the solution to the non-local
problem

∂α

∂x
= ka

D
(2P − 1)g(α),

∫ 1

0
(kag(α) + α) dx = 1, (41)

where g(α) is defined in (34). There are a few special cases for which explicit solutions
to (41) can be found. In particular, when P = 0.5, so that α = αc, where αc is a
constant, we readily obtain from (41) that

αc = 1

ka + 1
, (c = 0) ;

αc = 1

2c

(
c − (ka + 1) +

√
(c − (ka + 1))2 + 4c

)
, (c > 0). (42)

For the linear binding case, where ka = kb/ku, we observe that the expression for αc

is

αc =
1
kb

1
ku

+ 1
kb

,

which represents the fraction of time spent in the unbound state (kb gives the rate at
which a freely diffusing motor binds to MTs, so 1

kb
gives the mean residence time in

the unbound state). In addition, for linear binding where c = 0 so that g(α) = α, then
α(x) = αceβx where β ≡ (2P − 1)ka/D. By substituting this form into the non-local
condition of (41), we readily calculate αc to obtain for linear binding that

α(x) = αce
βx , where αc = β

ka + 1

1

eβ − 1
, β = (2P − 1)ka

D
. (43)

When the MT polarity P �= 0.5 is also constant across the cell, this case reduces
to simple exponential distributions of all kinesin states; that distribution is biased
towards the left (P < 0.5) or towards the right (P > 0.5), as previously described
in Dauvergne and Edelstein-Keshet (2015). However, in general, the solution to the
non-local problem (41) must be obtained numerically. As shown in “Appendix C”,
by recasting this non-local problem into an initial value problem, its solution can be
computed using a simple numerical shooting procedure.

In Fig. 3a–dwe plot numerical approximations of the steady-state solution to the full
transport model (dashed) and the QSS PDE (solid) for both linear binding (c = 0) and
saturated nonlinear binding (c = 1), for two constant values of the MT polarity. For
P = 0.5, and for c = 0 and c = 1, the advection term in (33) vanishes, leaving a purely
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Fig. 3 Effect of nonlinear binding and microtubule polarity. A comparison for P = 0.5 (unbiased MT
polarity, left panels) and for P = 0.6 (MT biased to the right, right panels) of the steady-state cytosolic
density pU(x) (dashed curves) of the full model (15), (25), and (34), with the steady-state α(x) (solid
curves) from the QSS PDE (36). a, b Linear binding (c = 0) [results in agreement with Dauvergne and
Edelstein-Keshet (2015)]. c, d Saturated nonlinear binding with c = 1. The parameters are ka = 5/3,
ε = 0.02, and D = 0.1. The total mass was initially fixed at

∫ 1
0 y(x, t) dx = 1 and is preserved in time.

Notice the different vertical scales between a and c. The QSS approximation describes the bulk behaviour
of the system well, but does not capture the boundary behaviour

diffusive motion. For P = 0.6, the MT polarity is biased to the right. Consequently,
the distributions of bound and cytosolic motors are also biased towards the right end
of the cell at x = 1. From Figure 3c, d we observe that the saturated binding term with
c = 1 slows the rate at which kinesin leaves the cytosolic compartment, causing more
kinesin to be sequestered in the middle of the cell. We further observe that the QSS
approximation is not valid in thin boundary layers near the two edges of the cell. These
boundary layers result from the reduction of the full three-equation model with four
boundary conditions, to a single PDE with two boundary conditions. The results from
the boundary layer analysis given in (113) of “Appendix D” show that the unbound
kinesin motor density pU near the two boundaries differs from its outer approximation
pU ∼ α by an error O(ε/D).

In Fig. 4, we compare the steady-state solution to the QSS approximation in the
linear binding (c = 0) and saturated binding case (c = 1), for the parameter range
where ka < 1 (a) and ka > 1 (b) with P = 0.6. In general, saturated binding results
in a shallower gradient of cytosolic motors across the cell. This result agrees with the
intuition that saturated binding restricts the rate of binding for large motor density.
This consequently restricts the total number of motors walking to the right end of the
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Fig. 4 Effect of the relative magnitudes of binding and unbinding rates kb, ku. Steady-state solutions
y(x) = eT p0(α(x)), obtained from the steady-state α(x) of the QSS PDE (36) with linear binding (c = 0,
solid) and saturated binding (c = 1, dashed) when ka < 1 (a) and ka > 1 (b). The other parameters are
P = 0.6, and D = 0.1, and the total mass was

∫ 1
0 y(x) dx = 1. In general, saturated binding results in

a shallower gradient of motors across the cell. The steady-state behaviour illustrates the effects of kb and
ku. For example, for large ku (relative to kb) as in a where ka = 0.1, the effective velocity, V (α), is much
smaller than the effective diffusion coefficient, D(α). This leads to a comparatively more uniform density
of motors than in b, where kb is larger than ku, and the advection term dominates

cell (P = 0.6), and in turn, saturated binding restricts the total number of motors that
accumulate at the cell end.

4.1.2 Saturated Binding with a Spatially Variable MT Polarity

Next, we consider a spatially varying MT polarity throughout the cell, P = P(x), and
derive a QSS approximation for the corresponding system of transport equations for
the case of saturated binding. In this case, the quasi-steady-state p0(α) is

p0(α) =
⎛

⎝
P(x)kag(α)

(1 − P(x))kag(α)

α

⎞

⎠ , g(α) = α

1 + cα
. (44)

The QSS PDE, from (29), is

∂

∂t

(
kaα

(1 + cα)
+ α

)
= ∂

∂x

(
D

∂α

∂x
− (2P(x) − 1)

kaα

(1 + cα)

)
. (45)

We observe that the sign of the advection term depends only on the sign of (2P(x)−1).
If P(x) < 0.5, then advection is to the left, while if P(x) > 0.5, then advection is
to the right. Biologically, if the MT polarity changes across the cell, we expect the
bulk molecular motor behaviour to change correspondingly. If P(x) > 0.5 on some
subinterval, we interpret the MT bias to be to the right. This leads to a collection of
motors walking to the right in this subinterval. Moreover, if P(x) < 0.5 on some
subinterval, then the bulk movement of motors in this subinterval is to the left.
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To explore the effect of non-constant P(x) on the QSS PDE (45) we consider two
hypothetical MT polarity functions. Our first choice is

P(x) = 1

2

[
1 − tanh

(
x − 1

2

)]
, (46)

for which P(0) ≈ 1, P(1) ≈ 0, P( 12 ) = 1
2 , and P ′(x) = − 1

2 sech
2(x − 1

2 ). For
x ∈ [0, 1

2 ), we have P(x) > 1
2 , which indicates that the MT polarity is biased to

the right in the left part of the cell. Similarly, for x ∈ ( 12 , 1], we have P(x) < 1
2 ,

which indicates that the MT polarity is biased to the left in the right part of the cell.
As a result of this MT polarity bias, the effective velocity coefficient in the QSS PDE
changes signs at x = 1

2 . We expect kinesin to walk towards the centre of the cell and
become “trapped” there. In Fig. 5a, we observe an aggregation of kinesin motors in the
centre of the cell at steady-state as predicted by the QSS PDE for both linear (c = 0)
and saturated binding (c = 1). The steady-state problem is solved numerically by the
shooting method outlined in “Appendix C”.

Following Dauvergne and Edelstein-Keshet (2015) and Gou et al. (2014), where
molecular motor movement in the hyphae of the fungus Ustilago maydis was studied,
our second choice is to consider a MT polarity bias near x = 0 and x = 1 that is
polarized towards these cell ends, while the MTs near the cell centre point to the right
and to the left with (roughly) equal probability. As a model of such a polarity we take

P(x) = 1

2

(
1 + tanh

[
2

(
x − 1

2

)])
. (47)

From the numerical computations of the steady-state of the QSS PDE, as shown
in Fig. 5b, we observe that with such a P(x) most of the kinesin motors are pushed
towards the boundaries of the cell for both linear (c = 0) and saturated binding (c = 1).
This results from the highly left-biased region at the left end of the cell and the highly
right-biased region at the right end of the cell. Moreover, saturated binding sequesters
more kinesin in the cytosolic compartment in the middle of the cell with a nonzero
density persisting throughout the cell at steady-state.

4.1.3 Hill Function Binding

Next, we consider a general Hill function for the binding rate, g(α), given by

g(α) = αn

K n + αn
, (48)

where n ≥ 1 and K > 0. Hill functions with n ≥ 2 are typically used tomodel positive
feedback or cooperative binding in biological systems. In this case, we can think of
kinesin motors binding cooperatively to the MTs in such a way that for low densities
of motors the binding rate is slow, at intermediate densities (α ≈ K ) binding is rapid,
while for high densities of motors the binding rate saturates to some maximal level.
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Fig. 5 Effects of two spatially dependent MT bias functions, P(x). Steady-states y(x) = eT p0(α(x)),
obtained from the steady-state α(x) of the QSS PDE (45) with spatially varying MT polarity where a MTs
“point towards” the cell centre (described by P(x) in (46)) and b “point towards” the cell ends (P(x) as
given in (47)). In both panels we show linear (c = 0, solid) and saturated binding (c = 1, dashed). In a we
observe an accumulation of kinesin at the centre of the cell, whereas in b the accumulation is at the cell
ends. Saturated binding sequesters more kinesin motors in the cytosolic compartment, which results in the
shallower, diffusion-dominated, motor distributions in the case c = 1 in both a and b. Other parameters are

ka = 5/3, and D = 0.1. The total mass was fixed at
∫ 1
0 y(x) dx = 1. a P(x) = 1

2

(
1 − tanh

(
x − 1

2

))
, b

P(x) = 1
2

(
1 + tanh

(
x − 1

2

))

The parameter K describes the value of α at which g(α) reaches half of its maximum
value, while the parameter n describes the “sharpness” of the switch.

With this choice (48) of monotonically increasing g(α), the quasi-steady-state slow
manifold is given in terms of g(α) by (44). In addition, the QSS PDE is given by (29)
with boundary conditions (30). We now numerically examine the role of the Hill
parameters n and K and discuss the effects that these parameters have on the bulk
behaviour of kinesin within the cell.

In Fig. 6, we show numerical approximations to the steady-state solution of the
QSS PDE for different values of n and K when P is fixed at P = 0.6. In particular, in
Fig. 6a, steady-state solutions are shown for a fixed K = 1 and for increasing n. Since
at motor density α = K the binding rate is half-maximal, we note that g(α) < 1

2 for
α < K . This implies that the advection term, ka(2P−1)g(α), remains relatively small
for α < K . This makes sense, since motors hardly bind to MT at that low density.
As K decreases from panel (a)–(c) in Fig. 6, the switch to rapid binding is made
possible wherever α exceeds K . For α > K , the advection term is near maximal, and
we consequently observe an aggregation of kinesin motor at the right end of the cell.
Hence, decreasing K from the value 1 shifts the system from slow advection to fast
advection, as seen by a comparison of the bulk distribution of motors across the cell
in panels (a)–(c). The parameter n controls the “sharpness” of the transition zone near
α ≈ K in the Hill function. As n increases, the approximation g(α) ≈ 0 for α < K
and g(α) ≈ 1 for α > K improves. In Fig. 6b we set K = 0.5. As n increases, the
switch from slow advection to fast advection becomes shaper. Hence, for large n, in
regions where the cytosolic motor density α is larger than K , advection dominates
over diffusion. Increasing n results in a sharper distribution of motors across the cell
in the steady-state solution.
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Fig. 6 Effect of the Hill function parameters K and n. Steady-states y(x) = eT p0(α(x)), obtained from
the steady-state α(x) of the QSS PDE (45) with a Hill function binding rate (48) for P = 0.6. The parameter
K represents the density of motors pU that leads to g(pU) = 1/2, whereas the Hill coefficient n governs
the “sharpness” of the Hill function. Other parameters are ka = 5/3 and D = 0.1. The total mass was fixed
at

∫ 1
0 y(x) dx = 1. a K = 1, b K = 0.5 and c K = 0.1

4.2 QSS Reduction: Kinesin–Dynein Model

As shown in “Appendix B.4”, the kinesin–dynein model (8) of Sect. 2.2 can be scaled
to a system of the form (15), where we identify

p =
⎛

⎝
pR

pL

pU

⎞

⎠ , f(p) =
⎛

⎝
kaQpU − pR − kpR pL

ka(1 − Q)pU − pL + kpR pL

pR + pL − ka pU

⎞

⎠ ,

M =
⎛

⎜⎝
− ∂

∂x 0 0
0 v ∂

∂x 0

0 0 D ∂2

∂x2

⎞

⎟⎠ . (49)

Here the positive dimensionless parameters v, ka, k, and D are defined in terms of the
original parameters of (8) by

v ≡ vl

vr
, D ≡ D0

vrL0
, ε ≡ vr

kuL0
, ka ≡ kb

ku
, k ≡ kcρ

ku
= (krl − klr)ρ

ku
.

(50)

Without loss of generality, we assume that krl > klr, so that k > 0, since the cell
ends are interchangeable. It is convenient to parameterize the quasi-steady solution
in terms of pL = α. In “Appendix B.4”, we readily determine that there is a unique
quasi-steady-state solution satisfying f = 0 given by

p0(α) =
⎛

⎝
pR

pL

pU

⎞

⎠ =
⎛

⎜⎝

Qα
kα+1−Q

α
1
ka

(
α + Qα

kα+1−Q

)

⎞

⎟⎠ . (51)

To determine whether this quasi-steady-state solution is a slow manifold in the
sense of Definition 3.1 we must calculate the eigenvalues λ of the Jacobian of f at
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p = p0. From a straightforward calculation we obtain that λ = 0 and that the other
two eigenvalues λ± satisfy the quadratic equation

λ2 − σ1λ + σ2 = 0 ; σ1 ≡ −2 − ka + k
(
pR − pL

)
,

σ2 ≡ 1 + ka + k(1 + ka)(p
L − pR). (52)

By using (51) for pL and pR, we determine σ1 and σ2 explicitly as

σ1 = −2 − ka − kαH(Q), σ2 = 1 + ka + kα(1 + ka)H(Q);
where H(Q) ≡ 1 − Q

1 + kα − Q
. (53)

A necessary and sufficient condition for Re(λ±) < 0 is that σ1 < 0 and σ2 > 0 in
(53). In “Appendix B.4” we show that these inequalities hold for any Q on 0 ≤ Q ≤ 1.
Therefore, p0 is a slow manifold in the sense of Definition 3.1.

Next, to determine the QSS PDE for α(x, t) governing the dynamics on the slow
manifold we simply calculate the terms in the solvability condition (24a). This leads
to the QSS PDE for α(x, t), given by

∂

∂t

((
1 + 1

ka

) (
kα + 1

kα + 1 − Q

)
α

)
= ∂

∂x

(
V (α)α + D(α)

∂α

∂x

)
, (54a)

where the “effective transport rate” and the “effective rate of diffusion” are given by

V (α) =
(

v − Q

kα + 1 − Q

)
, D(α) = D

ka

(
1 + (1 − Q)Q

(kα + 1 − Q)2

)
, (54b)

together with the zero-flux boundary conditions [see (108) of “Appendix D”]

V α + D
∂α

∂x
= 0, at x = 0, 1. (54c)

In Fig. 7 we compare numerical results for the motor densities pR, pL, and the
total density y, in the steady-state solution of the full transport model [(15) and (49)
with ε = 0.02] and in the corresponding steady-state of the QSS PDE (54). As shown,
the full solution and the QSS solution agree well in the middle of the cell, but, as
before, the QSS does not capture the boundary layer behaviour near the cell ends.
“Appendix D.2” provides a qualitative phase-plane analysis of the boundary layer
solutions and, in particular, predicts that pR ≈ 0.82 at x = 1, which agrees well with
the result in Fig. 7a.

We now examine the behaviour of solutions to the QSS PDE (54) and the role of
the parameters in the original model. We first observe from (51) that the density of
freely diffusing motors is a weighted average of the left-moving and right-moving
motors with weight 1/ka (ratio of mean time spent bound to mean time spent freely
diffusing). The density of right-moving motors at QSS, given by Qα

kα+1−Q , saturates

123



Application of Quasi-Steady-State Methods to Nonlinear… 1947

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

pR

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

pL

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

x

y
(t
ot
al

de
ns
it
y)

(c)
Fig. 7 Comparison of the full solution with the QSS solution. Shown are the steady-state of the full model
(15) and (49) (dashed curve) for ε = 0.02 and the solution of the QSS PDE (54) (solid curve) for pR (a),
pL (b), and the total density y at position x . The parameters are D = 0.1, ka = 2, k = 2, Q = 0.9, and
v = 0.5. The total mass in the cell was fixed at

∫ 1
0 y(x) dx = 1. The QSS approximation agrees well with

the full solution except near the boundary layers at the ends of the cell. a pR versus x. b pL versus x. c y
versus x

up to Q/k, as the density of left-moving motors, α, increases. From (54a) the sign of
the effective transport velocity V in (54b) determines the direction of motion, with
the motion being to the left if this quantity is positive. We readily calculate that the net
movement is to the left when the density of left-movingmotors, α, exceeds a threshold,
i.e. when α >

v(Q−1)+Q
vk . For example, with fixed v and k, changing Q (which is the

probability that a freely diffusing motor complex binds into the right-moving state)
will change this condition. Lowering Q increases the probability that a freely diffusing
motor binds into the left-moving state, which should bias the net advection to the left.
The “effective diffusivity”D of the system in (54b) is influenced by the parameters D,
ka, k, and Q. Increasing ka decreases the effective diffusion coefficient in (54a), which
should lead to steeper solution profiles across the cell (as usual, increasing D has the
opposite effect). Increasing the turning parameter k also decreases the diffusivity of
the motors. The binding bias parameter Q appears in the diffusion coefficient in two
ways. First, as Q → 0 or Q → 1, the diffusion coefficient approaches the limiting
value D/ka. Second, there exists a critical Q value that maximizes the effective rate
of diffusion, given a fixed motor density α and fixed k (this critical Q value is kα+1

2αk+1 ).
In Fig. 8, we plot steady-state solutions to the QSS PDE (54) for a range of values of

several parameters. These steady-states are readily calculated numerically by using a
numerical shooting method (see “Appendix C”). The top labelled curve in panel (a) is
produced with a baseline parameter set (k = 2, ka = 2, D = 0.1, v = 0.5, Q = 0.9)
to which parameter variations can be compared. The total mass of kinesin–dynein
complex is fixed as

∫ 1
0 y(x) dx = 1, where y(x) = eT p0(α(x)) and p0 is defined in

(51). Decreasing the probability, Q, of binding to the right-moving state (panel (a))
allows for more freely diffusing motors to bind to the left-moving state, and a shift in
right-biased movement to left-biased movement. Increasing the velocity ratio of left-
moving to right-moving motor complexes v (panel (b)) biases net movement towards
the left end of the cell, as expected. In (c), an increase in ka, which decreases the
“effective diffusivity” D , sharpens the interface between the regions of high density
and low density of stalled motors. In (d), increasing the turning rate constant, k, also
biases the net movement to the left end of the cell. Note that high values of k are
required to shift the behaviour from right-biased to left-biased due to the high baseline
Q value (Q = 0.9).
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Fig. 8 The effect of parameters Q, v, ka, k on the total density. The total density is y(x) = eT p0(α(x)),
obtained from the steady-state α(x) of the QSS PDE (54). Baseline parameters are k = 2, ka = 2, D = 0.1,
v = 0.5, Q = 0.9. This value of Q biases the bulk motor distribution to the right (top labelled curve in
a). In a, decreasing the binding bias Q (probability of binding to the right) results in a shift in right-biased
movement to left-biased movement. In b, an increase in v (the ratio of the velocities of left-moving to
right-moving complexes) biases net movement towards the left. In c, an increase in ka (which represents
the ratio of binding to unbinding rates kb/ku) sharpens the interface between the regions of high density
and low density of motors. In d, increasing the turning rate constant, k, also biases the net movement to the
left end of the cell. The total mass was set to

∫ 1
0 y(x) dx = 1 (Color figure online)

4.3 QSS Reduction: Myosin Model

Next, we study the QSS reduction of the myosin model given in (90). The analysis
of this model will differ from that of the previous two models in that there are two
possible quasi-steady-state solutions. In addition, the boundary layer behaviour will
play a non-trivial role in the dynamics.

As shown in “Appendix B.5”, the myosin model (11) of Sect. 2.3 can be scaled to
a system of the form (15) by

p =
⎛

⎝
pW

pB

pU

⎞

⎠ , f(p) =
⎛

⎜⎝
−kbw

(
pB

)2
pW + kb pU − pW

kbw
(
pB

)2
pW − pB

pB + pW − kb pU

⎞

⎟⎠ ,

M =
⎛

⎜⎝
− ∂

∂x 0 0
0 v ∂

∂x 0

0 0 D ∂2

∂x2

⎞

⎟⎠ , (55)
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where the dimensionless parameters v, D, ε, kbw, and kb are defined by

v ≡ vb

vw
, D ≡ Df

vwL0
, ε ≡ vw

kuL0
, kbw ≡ k̂bwρ2

ku
, kb ≡ k̂b

ku
. (56)

We set the nonlinear kinetics in the scaled myosin model (90a) and (90c) to zero to
obtain the two equations

kbw
(
pB

)2
pW − pB = 0, −kb p

U + pB + pW = 0. (57)

The two possible solutions to the first equation in (57) are pB = 1/
[
kbw pW

]
and

pB = 0. In the latter case, the motors equilibrate between freely diffusing and walking
on MT, with no motors in the bound, stalled state. In the former case, there is some
proportion of motors that are stalled. We analyse each of these cases in turn.

4.3.1 Type I Quasi-Steady-States: pB ≡ 0

We first consider pB ≡ 0. We let pU be the free parameter and set pU = β(x, t). This
yields the quasi-steady-state

p0(β) =
⎛

⎝
pW

pB

pU

⎞

⎠ =
⎛

⎝
kbβ
0
β

⎞

⎠ . (58)

For p0, we readily calculate that the eigenvalues λ of the Jacobian of the kinetics f(p)

at p = p0 are λ = 0, λ = −1, and λ = −1 − kb. Therefore, (58) is a slow manifold
in the sense of Definition 3.1. From the QSS reduction approach of Sect. 3, the QSS
PDE for β(x, t) is calculated by expanding the solvability condition (24a). This yields
the linear PDE

(kb + 1)
∂β

∂t
= ∂

∂x

[
D

∂β

∂x
− kbβ

]
, 0 < x < 1 ; D

∂B

∂x
= kbβ, on x = 0, 1.

(59)

The steady-state solution βs(x) of (59) having a unit mass, so that
∫ 1
0 (kb+1)β dx = 1,

is simply

βs(x) =
(

kb
(kb + 1)D

)
ekb(x−1)/D

1 − e−kb/D
, (60)

which determines the steady-state as p0[βs(x)] from (58).
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Moreover, since the time-dependent QSS PDE (59) is linear, it is readily solved by
separation of variables as

β(x, t) = βs(x) + ekbx/D
∞∑

n=1

cne
−λn D t/(kb+1)n(x), (61)

where cn for n ≥ 1 are coefficients defined in terms of the initial data β(x, 0). Here
λ = λn > 0 and  = n(x) are the positive eigenvalues and eigenfunctions of the
Sturm–Liouville problem

(
w(x)′)′ + λw(x) = 0, 0 < x < 1 ;

′(0) = ′(1) = 0, w(x) ≡ ekbx/D. (62)

Since the myosin model (90) is linear when pB ≡ 0, the boundary layer analysis
near x = 0 and x = 1 is routine for this quasi-steady-state. At steady-state, and with
pB = 0 in (90), we find from (110) that there is no boundary layer near x = 1.
By solving the boundary layer equations (111) near x = 1, we readily obtain the
leading-order uniform steady-state approximation

pW = kbA
(
ekbx/D − e−x/ε

)
, pU = Aekbx/D, where

A ≡ kb
D(kb + 1)

e−kb/D

1 − e−kb/D
. (63)

We see from (63) that pU is an exponentially increasing function. By comparison, pW

has a rapidly decaying correction factor (since 1/ε is large in the second exponential),
which produces a small “knee” in its graph, Fig. 9a, close to the origin.

Our numerical results show that the steady-state (63) with pB = 0 is realizable
from the long-time dynamics of the full transport model (90) with different initial
states for pW, pB, and pU at t = 0. In Fig. 9 we plot the numerical solution pW and
pU to (90) at t = 130 for the parameter values ε = 0.02, kb = 0.3, kbw = 0.5, and
D = 0.1, when the initial densities are spatially uniform and equally partitioned as
pW = pB = pU = 1/3 at t = 0. The full dynamics quickly drives pB to zero as t
increases. From Fig. 9, at t = 130 we observe that the computed motor densities pW

and pU from the full model agree well with the steady-state asymptotic result (63).

4.3.2 Type II Quasi-Steady-States: pB > 0

For our second choice we let pB �= 0 be the free parameter, and define pB = α(x, t).
Upon solving (57) for pW and pU, we obtain the quasi-steady-state solution for (90)
given by

p0(α) =
⎛

⎝
pW

pB

pU

⎞

⎠ =
⎛

⎜⎝

1
kbwα

α
1
kb

(
α + 1

kbwα

)

⎞

⎟⎠ . (64)
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Fig. 9 Full numerical versus asymptotic solutions to the myosin model. Shown are steady-state motor
densities (solid curves) pW (a) and pU (b) (shown at t = 130) computed from the full time-dependent
myosin transport model (90) for ε = 0.02 and with the spatially uniform initial condition pW = pB =
pU = 1/3 at t = 0, so that the total mass is unity. The parameters are kb = 0.3, kbw = 0.5, and D = 0.1.
Although pB > 0 at t = 0, the dynamics quickly drives pB to zero as t increases. The dashed curves in
a and b are the asymptotic results (63) for the steady-state, which compare favourably with the numerical
results

Next, we calculate the eigenvalues λ of the Jacobian of the kinetics f(p) at p = p0

to determine whether p0 is a slow manifold in the sense of Definition 3.1. After some
algebra we obtain that λ = 0, while the remaining two eigenvalues λ± satisfy the
quadratic equation λ2 − σ1λ + σ2 = 0, where σ1 and σ2 are given by

σ1 = −2 − kb + 2kbw p
B pW − kbw

(
pB

)2
, (65a)

σ2 =
(
1 − 2kbw p

B pW
)

(1 + kb + kbw(pB)2) + 2k2bw(pB)3 pW

− kb + kb
(
1 + kbw(pB)2

)
, (65b)

with pB and pW as given by the entries in (64). Upon using (64) for p0, we calculate
σ1 and σ2 to

σ1 ≡ −kb − α2kbw, σ2 ≡ (kb + 1)
(
α2kbw − 1

)
. (66)

Since σ1 < 0, a necessary and sufficient condition for Re(λ±) < 0 is that σ2 > 0
in (66). We conclude from the expression for σ2 in (66) that p0 is a slow manifold
whenever kbw > 1/α2.

For kbw > 1/α2, we derive the QSS PDE by imposing the solvability condition
(24a). This yields that

(1, 1, 1)
∂

∂t

⎛

⎝
1

kbwα

α
α
kb

+ 1
kbkbwα

⎞

⎠ = (1, 1, 1)M

⎛

⎝
1

kbwα

α
α
kb

+ 1
kbkbwα

⎞

⎠ . (67)
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Fig. 10 Region of solution existence (unshaded). Shown are the regions in the kbw versus kb parameter
space where a steady-state to the myosin model Type II QSS PDE (68) for D = 0.1 exists when a v = 0.1
and b v = 0.5. In the shaded regions, there is no steady-state to the Type II QSS PDE. On the boundary of
these regions α = 1/

√
kbw at x = 0. The total mass was fixed at

∫ 1
0 y(x, 0) dx = 1. The points marked in

the left and right panel are parameter values where solutions are shown in Figs. 11 and 12, respectively

By calculating the various terms in this expression, we obtain the following non-
linear QSS PDE for α(x, t):

∂

∂t

(
(kb + 1)(kbwα2 + 1)

kbkbwα

)
= ∂

∂x

(
V (α)α + D(α)

∂α

∂x

)
, (68a)

where the “effective transport rate” and the “effective rate of diffusion” are given by

V (α) = vα − 1

kbwα
, D(α) = D

(kbwα2 − 1)

kbkbwα2 . (68b)

From (108) of “Appendix D”, the zero-flux boundary conditions for this conservation
law are

V + D
∂α

∂x
= 0, at x = 0, 1, (68c)

which are exactly zero-flux boundary conditions for the QSS PDE (68). From (68b)
we observe that the advection direction depends on the sign of V . In particular, if
α < 1/(

√
vkbw), the netmovement is to the right. By integrating theQSSPDEover the

domain, and by using (68c), we obtain a conservation law for y(x, t) = eT p0[α(x, t)],
where p0(α) is defined in (64). For all t > 0, we obtain in terms of α(x, t) that

∫ 1

0
y(x, t)dx =

∫ 1

0
y(x, 0) dx, y(x, t) ≡ (kb + 1)

kbkbw

(kbwα2 + 1)

α
. (69)

We remark that on the range kbwα2 − 1 > 0 for which p0 is a slow manifold for
the dynamics, the QSS PDE (68a) is well-posed in that the diffusion coefficient in
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Fig. 11 Effect of the (scaled) binding rate, kb. We show the QSS densities pB (a), pW (b), and pU (c),
computed from (71) and (64), for three values of kb corresponding to taking a horizontal slice through the
parameter space in Fig. 10b with fixed kbw = 12. Other parameters are D = 0.1 and v = 0.5. The total
mass was fixed at

∫ 1
0 y(x) dx = 1. a pB versus x. b pW versus x. c pU versus x

(68a) is positive. In fact by expanding (68a), we obtain that (68a) is equivalent to the
following PDE with a constant diffusivity D/(kb + 1),

∂α

∂t
= D

kb + 1

∂2α

∂x2
+ kbwkb

(kb + 1)(kbwα2 − 1)

×
((

vα2 + 1

kbw

)
∂α

∂x
+ 2D

αkbkbw

(
∂α

∂x

)2
)

. (70)

Alongside the transport term involving ∂α
∂x , the source term

2D
αkbkbw

(
∂α
∂x

)2
describes how

gradients in α can lead to an increase in motor density, especially for low densities (so
that 1/α is large).

Steady-state solutions to the QSS PDE (68) are solutions to the non-local problem

dα

dx
= −kb

D

(
vkbwα2 − 1

)

kbwα2 − 1
α,

(kb + 1)

kbkbw

∫ 1

0

(kbwα2 + 1)

α
dx = 1, (71)

provided that kbwα2 − 1 > 0 on 0 ≤ x ≤ 1. Here we have fixed the total mass as∫ 1
0 y(x, 0) dx = 1. We use the numerical shooting method described in “Appendix
C” to solve (71) and, further, to numerically identify the region in the kbw versus kb
parameter space where kbwα2 − 1 > 0 on 0 < x < 1. For D = 0.1, this region is
shown in Fig. 10a, b for v = 0.1 and v = 0.5, respectively.

In Fig. 11a–c we plot the QSS motor densities pB(x), pW(x), and pU(x), for three
values of kb corresponding to taking a horizontal slice at fixed kbw = 12 through the
parameter plane in Fig. 10b with v = 0.5. In terms of α(x), these densities are given
by (64). From Fig. 11a–b we observe that as kb increases there is an accumulation
of bound myosin motors, with a corresponding decrease in walking myosin motors
near the left end of the cell. From Fig. 11c we observe that as kb increases, there is
a decrease in unbound freely diffusing motors in the cytosolic compartment in the
middle of the cell.

In Fig. 12a–c we plot the QSS motor densities pB(x), pW(x), and pU(x), for three
values of kbw corresponding to taking a vertical slice at fixed kb = 3.0 through the

123



1954 C. Zmurchok et al.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

x

p
B

=
α

kbw = 19.43
kbw = 22
kbw = 25

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

x

pW

kbw = 19.43
kbw = 22
kbw = 25

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

x

p
U

kbw = 19.43
kbw = 22
kbw = 25

(a) (b) (c)

Fig. 12 Effect of the (scaled) stalling rate, kbw. As in Fig. 11 but for three values of kbw corresponding to
taking a vertical slice through the parameter space in Fig. 10a with fixed kb = 3.0. a pB versus x. b pW
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Fig. 13 Effect of treadmilling speed, v, QSS densities pB, pW, and pU, computed from (71) and (64),
for a v = 0.1 and b v = 0.5. As v increases, we observe that the system switches from right-biased
advection to left-biased advection. Other parameters are kbw = 20, kb = 3, and D = 0.1. The total mass
is

∫ 1
0 y(x, 0) dx = 1

phase-diagram in Fig. 10a with v = 0.1. We observe from Fig. 12a, b that as the
transition rate kbw between walking to bound motors increases, there is a decrease in
walking motors, with a corresponding increase in bound motors near the left end of
the cell.

Finally, in Fig. 13a, b we plot the QSS motor densities for v = 0.1 and v = 0.5,
respectively, for the parameters kb = 3, kbw = 20, and D = 0.1. As the treadmilling
speed, v, increases from v = 0.1 to v = 0.5, we observe that the system switches from
right-biased advection to left-biased advection. This matches the observation that net
movement is to the right if pB ≡ α < 1/

√
vkbw. For small treadmilling velocity v,

this condition is more easily satisfied since the quantity 1/
√

vkbw is large.
Two notable features distinguish the myosin model from previous models dis-

cussed in this paper. The first is existence of two possible QSS approximations, as we
have shown. A second feature pertains to the boundary layer behaviour near x = 0
and x = 1. This is analysed in detail in “Appendix D.3” based on the full myosin
transport model (90) near x = 0. There we show, using phase-plane analysis, that
we can always insert a boundary layer near x = 0 to satisfy pW = 0 at x = 0.
However, “Appendix D.3” shows that there is no steady-state boundary layer solu-
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Fig. 14 pB(x, t) converges to
Type I QSS. The density of
bound motors, pB(x, t), tends to
zero behind a wave propagating
backwards from x = 1. The full
myosin model converges to a
Type I QSS as no non-trivial
steady-state solution satisfies the
boundary condition pB(1) = 0.
Parameters are kbw = 25,
kb = 3, D = 0.1, v = 0.5, and
ε = 0.02 (Color figure online)
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tion near x = 1 that allows the extra boundary condition pB = 0 at x = 1 to be
satisfied. This difficulty results from the fact that pB = 0 is the slow manifold for
the Type I solutions of Sect. 4.3.1. Since no steady-state boundary layer solution
exists in the full model, we find that any nonzero density of stalled motors pB will
tend to 0 via a backwards propagating wave that leaves pB = 0 in its wake. We
find that the full myosin model converges to a Type I QSS (58) regardless of the ini-
tial condition. An example of this behaviour is shown in Fig. 14, where kbw = 25,
kb = 3, D = 0.1, v = 0.5, and ε = 0.02. As a result, drawing conclusions about
the behaviour of the full system from the QSS PDE becomes difficult. This leads to
the question of which QSS PDE, Type I or Type II, better describes the bulk system
dynamics.

One possible regularization to overcome this problem with the boundary layer near
x = 1 is to add an asymptotically small diffusion term ε1 pBxx to (90), where ε1 = O(ε),
which to leading-order does not affect the quasi-steady-states. The addition of such
a small “regularizing” diffusion term also appears in the travelling wave analysis of
Yochelis and Gov (2016). The fully scaled model is as in (90c), but with the additional
small diffusion term in the pB equation:

∂pW

∂t
= −∂pW

∂x
+ 1

ε

(
−kbw

(
pB

)2
pW + kb p

U − pW
)

, (72a)

∂pB

∂t
= ε1

∂2 pB

∂x2
+ v

∂pB

∂x
+ 1

ε

(
kbw

(
pB

)2
pW − pB

)
, (72b)

∂pU

∂t
= D

∂2 pU

∂x2
+ 1

ε

(
pB + pW − kb p

U
)

. (72c)

The boundary conditions are as before, (12) and (13), but instead of pB(1, t) = 0, we
now impose that

∂pB

∂x
(0, t) = 0 and

∂pB

∂x
(1, t) = 0, (73)

for conservation of mass.
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Fig. 15 Steady-state behaviour of the regularized myosin model. a The steady-state behaviour of the full
myosin model with small pB diffusion term. Note that pB > 0 for all x . b A comparison of the total density
of myosin in the Type II QSS approximation and in the full model. Note that this Type II QSS behaviour
approximates the full system dynamics well. Parameters are kbw = 25, kb = 3, D = 0.1, v = 0.5,
ε = 0.02, and ε1 = 0.005. The total mass was fixed at

∫ 1
0 y(x) dx = 1 (Color figure online)

In this case, both Type I and Type II QSS PDEs are valid approximations of the
full system, and it is possible to add steady-state boundary layers near x = 0 and
x = 1 for the regularized model (72). However, it is intractable analytically to analyse
the global behaviour of time-dependent solutions for (72), so as to predict which of
the two types of QSS PDEs will result from an arbitrary initial state. In Fig. 15a, we
show that the full model (72) with asymptotically small diffusion term ε1 pBxx has a
steady-state with nonzero pB and that solutions can converge to the Type II QSS (as
compared with Fig. 14). In this case, as shown in Fig. 15b, solutions to the full myosin
model and the Type II QSS PDE agree as expected.

Due to the existence of two QSS solutions, we predict that the initial condition for
(72) determines whether the full myosin model converges to the Type I or Type II
QSS. To elucidate this hypothesis, we fix the model parameters kbw = 25, kb = 3,
D = 0.1, v = 0.5, ε = 0.02, and ε1 = 0.005 and numerically determine which
QSS the regularized full system of PDE’s (72) converges to for a range of spatially
homogenous initial conditions. We choose spatially homogenous constant initial con-
ditions: pW(x, 0) = c1, pB(x, 0) = c2, with 0 ≤ c2, c2 ≤ 1, c1 + c2 ≤ 1 and
pU(x, 0) = 1− c1 − c2 to ensure conservation of total mass. In Fig. 16, the results of
this exploration are shown in a phase-diagram. For a given pair of spatially homoge-
nous initial conditions, (pB(x, 0), pW(x, 0)), a circle indicates that the model (72)
converges to a Type I QSS, while a cross indicates that the model (72) converges
to a Type II QSS. The line on the phase-diagram indicates the unstable manifold
which emanates from a saddle-point steady-state in themyosinmodel reaction kinetics
(the non-spatial myosin model). For a phase-plane analysis of the non-spatial myosin
model, see Appendix B.4. Below this unstable manifold, the non-spatial myosin reac-
tion kinetics converge to a steady-state with pB = 0, similar to a Type I QSS. Above
this unstable manifold, the non-spatial model converges to a steady-state with pB > 0,
similar to a Type II QSS. The discrepancy between the unstable manifold computed
from the non-spatial model and the phase-diagram from the fully spatial model indi-
cates that the spatial processes enlarge the region of attraction for Type II QSS with
nonzero pB.
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Fig. 16 Myosin model initial condition dependence. The steady-state behaviour of the full myosin model
with pB diffusion depends on the initial conditions. For a given pair of spatially homogenous initial con-

ditions,
(
pW(x, 0), pB(x, 0)

)
= (c1, c2), with pU(x, 0) = 1 − c1 − c2, the solution will converge to

a Type I steady-state, with
∫ 1
0 pB(x) dx = 0 (indicated by a circle), or to a Type II steady-state (cross),

with
∫ 1
0 pB(x) dx > 0. The line in the phase-diagram represents the unstable manifold computed from the

non-spatial myosin model (Sect. B.4). In the non-spatial model, the solution converges to a Type I steady-
state (pB = 0) with initial conditions below this unstable manifold, while the solution converges to a Type
II steady-state (pB > 0) with initial conditions above this unstable manifold. Parameters are kbw = 25,
kb = 3, D = 0.1, v = 0.5, ε = 0.02, and ε1 = 0.005. The total mass was fixed at

∫ 1
0 y(x) dx = 1. a

Phase-diagram, b enlarged version of a

5 Discussion

The quasi-steady-state reductionmethod formolecularmotor transportwas introduced
in Newby and Bressloff (2010b) for reaction–advection–diffusion systems with linear
reaction kinetics. Here we have generalized this method to a class of problems where
the kinetics are nonlinear, but where a conservation condition is satisfied. The QSS
method relies on the assumption that the nonlinear kinetics occur on a faster timescale
than the diffusion and advection processes. In this limit of fast reaction kinetics, and
under a condition on the eigenvalues of the Jacobian of the kinetics, the full system
dynamics were shown to be well approximated by the dynamics on a slow solution
manifold, which consists of a single scalar quasi-steady-state PDE. This asymptotic
formalism was used to analyse three specific nonlinear models for the binding and
unbinding of molecular motors.

The models we used as case studies included the following: (1) a model with non-
linearity in the binding rate of motors to MT (due to saturation, with and without
binding cooperativity). This model reduces (with parameter c = 0) to the lin-
ear binding case considered in a previous study (Dauvergne and Edelstein-Keshet
2015) and is used here as a basic “control” to validate our method. Typical bio-
chemical binding functions, such as Michaelis–Menten or Hill function kinetics
were used to describe the dependence of binding rate on the free motor density
(represented by the increasing and saturating function g). Here the nonlinearity
was a function of a single state variable. (2) In the second class of models, non-
linearity stemmed from interaction between motors in different states, such as
collisions that lead to direction changes or stalling while bound to a MT. Both
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the kinesin–dynein complex model and the myosin motor model shared such
aspects.

Each model we explored satisfied a conservation law, namely that the total density
of motors was fixed in the cell. This constraint served an important purpose, as it was
used to reduce the system from n to n − 1 states (where n = 3 for all our models).
In each case, we defined the population of motors in various states in terms of one
reference state [denoted by α(x)]. The choice for that reference state was merely a
matter of convenience of calculations and was not the same for all cases.

We found that many elements of the linear QSS theory carry over. However, the
geometry of projections in the linear case [as developed in Newby and Bressloff
(2010b), Bressloff and Newby (2013)] no longer holds, which suggests that obtaining
higher-order terms in asymptotic solutions is no longer tractable. Obtaining expres-
sions for such correction terms remains an open problem. Moreover, in many cases,
the diffusion coefficient in the unbound state is taken to be O(ε). If this is the case,
in those particular cases where the drift term vanishes, our QSS PDE would simply
reduce to a conservation law for the total density of motors in the system and fail to
describe the dynamics of the system. To avoid this, we take the diffusion coefficient
in the unbound state to be O(1).

For all such models, our QSS reduction of (15) leads to new scalar nonlinear PDEs,
which do not seem to be amenable to analytical solution techniques. Althoughwewere
still required to solve these QSS PDEs numerically, the QSS reduction does effectively
eliminate the small parameter ε from the full model and avoids the more challenging
numerical task of having to compute solutions to the full nonlinear vector system (15)
of PDEs at each small ε.

The QSS analysis allows us to draw conclusions about the overall rate of transport
(advection velocity) of the system that results from the combination of motors walking
on MT, diffusing while unbound, and kinetics of binding, unbinding, switching direc-
tions, and/or stalling. Additionally, the QSS PDE was shown to readily allow insight
into the behaviour of the steady-state solutions as parameters are varied. This insight
was used to interpret cell-level behaviours resulting from various specific mathemat-
ical models of motor interactions. We summarize some of our major conclusions and
their implications below for each of the case studies.

Kinesin Model Here the cytosolic motor state was used as the reference state α, and
a Fokker–Planck (FP) equation (29) was derived for the total motor density. In the
special case of spatially constant MT bias, this reduced further to the FP equation
(33a) for the cytosolic state from which we can draw several conclusions. (a) The
overall transport direction depends on the sign of (1 − 2P). (b) When (1 − 2P) �= 0
(whichmeans thatmoreMTs point to one end of the cell than to the other)we predict an
exponential spatial motor distribution, whose maximum coincides with the cell end to
which MTs are biased. (c) Both the effective diffusion and the effective transport rates
are (essentially) averages of the diffusion and transport rates in the underlying states,
weighted by the fraction of time spent in each of those states. These conclusions are
consistent with results of the linear models in Dauvergne and Edelstein-Keshet (2015).
(d) When MT polarity bias P(x) is spatially non-uniform, there arises the possibility
for motors to pile up either at cell ends or in the middle of the cell, as shown in Fig. 5.
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This reflects the earlier results for the QSS reduction of a model with spatially varying
parameters. In this case, the resulting QSS PDE had spatially dependent effective
diffusion and velocity (Newby andBressloff 2010a). (e) The overall effect of nonlinear
binding in this case is that more kinesin motors are sequestered in the freely diffusing
class, which results in a shallowermotor density across the cell. The shallower solution
profile results from the fact that the binding rate is limited in both the saturated binding
and Hill function binding cases. (f) Hill function binding (which could represent
cooperative motor binding interactions) creates “kinks” and inflection points in the
spatial motor distribution, since the Hill function turns binding on or off more sharply
than does Michaelis–Menten kinetics.

Kinesin–Dynein Model Here the nonlinearity involves a product of two state vari-
ables (left- and right-moving complexes), a composite left–right bias function Q(x),
and possibly distinct velocities when moving right or left. (See “Appendix A.2”
for the relationship of the function Q to the underlying biological details.) Here
the left-moving motor variable was used as reference state α. We found that both
effective transport rate and effective diffusion rate are “density dependent” (func-
tions of α). The effective transport rate depends intuitively on the model parameters.
Increasing the velocity of left-moving complexes, decreasing the probability of bind-
ing to the right-moving state, or increasing the right-to-left turning rate all results
in biasing transport towards the left end of the cell. The effective diffusion rate
is scaled by 1/ka, the association constant, which intuitively modulates how many
molecular motor complexes remain in the cytosolic vs. bound states. The effec-
tive diffusion rate is further increased from baseline through the “tug-of-war” that
the motor complex exerts on its cargo. This increase results from the product
(1 − Q)Q, which gives the probability of binding into the left-moving and right-
moving state. Although a motor cannot simultaneously bind into the left-moving
and right-moving state, we find that the competition between right-moving and left-
moving states increases the effective diffusion of the system—this makes sense, as
any rapid switching between right- and left-moving states is similar to a diffusive
mechanism.

Myosin Model The motor interference was assumed to cause stalling with a higher-
degree nonlinearity ((pB)2 pW) than in the kinesin–dynein motor complex model,
which was inspired by the nonlinear interactions in a model for myosin aggregations
(Yochelis and Gov 2016; Yochelis et al. 2015). Moreover, the stalled and walking
myosin motors have different velocities, with the stalled motors being transported
due to actin treadmilling. Interestingly, this higher-degree nonlinearity gave rise to
two distinct QSS solutions, one of which was characterized by the absence of stalled
motors (pB = 0, “Type I QSS”). In this case, the QSS PDE is linear and the steady-
state solution can be found explicitly. For the second QSS solution with pB �= 0, we
identified a nonlinear FP equation with diffusivity D/(1 + kb), a density-dependent
effective transport term, and an additional term proportional to (∂α/∂x)2. We showed
that the latter (“Type II QSS”) exists only for a subset of parameters (Fig. 10). More-
over, solutions to the full system converge to the Type I solution, unless the model is
corrected by an asymptotically small diffusion term for the stalled motors. Interest-
ingly, such a term had been included in the model in Yochelis and Gov (2016). There,
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it was justified physically as a small random motion of stalled motors. Our analysis
reveals a mathematical justification as well. We showed that this peculiar effect stems
from an issue with the boundary layer at the cell end x = 1. The small diffusive
correction term changes the pB equation from hyperbolic to parabolic, allowing the
model to be consistent with boundary conditions that the uncorrected model cannot
satisfy. In this case, the existence of two QSS solutions required further investigation
of the behaviour of the full myosin model. We used extensive numerical simulations
to determine which QSS PDE would better describe the dynamics of the full system
(Fig. 16). In the end, a phase-plane analysis of the non-spatial kineticmodel can largely
suggest which QSS PDE would be valid for which set of spatially homogenous initial
conditions.

All in all, we showed the extent to which QSS analysis is generalizable to nonlinear
models for molecular motors. That said, we recognize that all examples discussed
herein are simplified prototypes and caricatures of actual molecular motor behaviour.
For example, a caveat of the kinesin model (3) is that the nonlinear binding function,
g(pU), may not accurately describe biological effects such as competition for binding
sites on a single MT. As formulated with a saturating function for g(pU), the model
implies that crowding in some region of the cell is responsible for limiting the binding
rate of motors toMTs.We interpret the saturated binding rate as a result of competition
or crowding for binding sites on a single MT.

In reality, we know that many more states and interactions between states could
occur, making the biological system more interesting, but also much more compli-
cated to analyse mathematically. We have not considered the cases of heterogenous
multi-motor complexes composed of a distribution of motor types, nor the additional
interactions with cargo such as vesicles or early endosomes. It remains unclear at
present whether similar methods would lead to insights into such realistic and complex
models. The QSS methodology has also been extended to two-dimensional models
in the context of a searcher alternating between ballistic and diffusive movement
phases (Bressloff and Newby 2011) with linear kinetics. The method presented here
should extend to two-dimensional nonlinear models, provided that the conditions on
the kinetic terms are met, although it remains an open problem for which classes of
nonlinear kinetics and in which dimensions it is possible to analytically write down
an approximating QSS PDE.
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Appendix A: Microtubule Density and Binding by Motor Complexes

A.1 Kinesin Model with Non-uniform MT Density

To explicitly incorporate the possibility that MT density, m(x) (as well as fraction of
MT pointing to the right, P(x)) varies across the cell, we can write the kinesin model
equations as
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∂pR

∂t
= −v

∂pR

∂x
+ P(x)kbmm(x)g(pU) − ku p

R, (74a)

∂pL

∂t
= v

∂pL

∂x
+ (1 − P(x))kbmm(x)g(pU) − ku p

L, (74b)

∂pU

∂t
= D0

∂2 pU

∂x2
− kbmm(x)g(pU) + ku p

R + ku p
L. (74c)

This modification of the model introduces another factor into coefficients that are
already spatially dependent, but otherwise leaves the model structure unchanged.
Hence, the techniques in the paper apply as before with kbmm(x) replacing the param-
eter kb.

For the purposes of our proof-of-concept analysis, we now restrict attention to
uniform MT density so that m(x) ≡ m0 is a constant. Then the model for kinesin is
given by (75) as below, with the assignment

kb = kbmm0.

That is, the binding constant kb is understood to represent the net rate of binding,
which includes both the per-MT-binding rate and the MT density.

A.2 Kinesin–Dynein Model and the Function Q(x)

The kinesin–dynein model simplifies the binding of free motor complexes into states
that move right with probability Q(x) and left with probability 1−Q(x). We consider
the case of motor complexes that all have nk kinesin and nd dynein components. (The
case of complexes with a variety of motor numbers can be handled by considering the
mean composition of a complex or the mean ratio between the two motor types.) Let
us also define the parameters kbd and kbk as the binding rates for a (single) dynein and
for a (single) kinesin to a MT, and consider m(x) as the local MT density. Then we
can decompose the quantity kbQ in the model as follows:

kbQ(x) = m(x) [P(x)nkkbk + (1 − P(x))ndkbd ] .

This related the aggregate binding rate to the probability that a kinesin binds to right-
pointing MT and that dynein binds to left-pointing MT. Similarly,

kb(1 − Q(x)) = m(x) [(1 − P(x))nkkbk + P(x)ndkbd ] .

Since such details merely substitute one spatially dependent function for another, the
analysis we have described carries over as before.
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Appendix B: Scaling the Models and the QSS Reduction

B.1 The Kinesin Model

We consider the kinesin model with uniform MT density and demonstrate its scaling
here. This system is

∂pR

∂t
= −v

∂pR

∂x
+ Pkbg(p

U) − ku p
R, (75a)

∂pL

∂t
= v

∂pL

∂x
+ (1 − P)kbg(p

U) − ku p
L, (75b)

∂pU

∂t
= D0

∂2 pU

∂x2
− kbg(p

U) + ku p
R + ku p

L. (75c)

We define T by

T ≡
∫ L0

0

(
pR(x) + pL(x) + pU(x)

)
dx ≡

∫ L0

0
y(x) dx .

Then T is the total amount of motors inside the cell, and ρ = T/L0 is the average
density of motors in the cell.

Scale space, time, and densities as follows:

x� = x

L0
, t� = tv

L0
, pJ� = pJ

ρ
, y� = y

ρ
,

where y� = pR
� + pL

� + pU
�
is the total scaled density. We have scaled distance by

the cell length and time by the time that a motor takes to walk across the cell. The
densities of each state are scaled by the average motor density across the cell.

Then we can recast the total amount as

T =
∫ 1

0

(
ρ pR

�
(x�) + ρ pL

�
(x�) + ρ pU

�
(x�)

)
d(L0x

�).

Taking out the constant factor of ρL0 ≡ T from the integral results in

T = ρL0

∫ 1

0

(
pR

�
(x�) + pL

�
(x�) + pU

�
(x�)

)
dx�,

which leads to

∫ 1

0
y�dx� =

∫ 1

0

(
pR

�
(x�) + pL

�
(x�) + pU

�
(x�)

)
dx� = 1.

With this scaling, the integral of the total scaled density is unity, which we assume
throughout our numerical computations.
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Substituting the scaled variables into the PDE system (75) leads to

v

L0

∂(ρ pR
�
)

∂t�
= −v

L0

∂(ρ pR
�
)

∂x�
+ ku

(
P(x)

kb
ku

g(ρ pU
�
) − (ρ pR

�
)

)
, (76a)

v

L0

∂(ρ pL
�
)

∂t�
= v

L0

∂(ρ pL
�
)

∂x�
+ ku

(
(1 − P(x))

kb
ku

g(ρ pU
�
) − (ρ pL

�
)

)
, (76b)

v

L0

∂(ρ pU
�
)

∂t�
= D0

L2
0

∂2(ρ pU
�
)

∂x�2
+ ku

(
ρ pR

� + ρ pL
� − kb

ku
g(ρ pU

�
)

)
. (76c)

Then we can consider two cases, depending on whether the function g is linear or not.
Case I: g is linear In this case, we can eliminate the factor ρ from every term. Dividing
each term in the equations by vρ/L0 and dropping the stars leads to

∂ pR

∂t
= −∂ pR

∂x
+ 1

ε

(
P(x)ka p

U − pR
)

, (77a)

∂ pL

∂t
= ∂ pL

∂x
+ 1

ε

(
(1 − P(x))ka p

U − pL
)

, (77b)

∂ pU

∂t
= D

∂2 pU

∂x2
+ 1

ε

(
pR + pL − ka p

U
)

, (77c)

where D, ε, and ka are defined by

D ≡ D0

vL0
, ε ≡ v

L0ku
, ka ≡ kb

ku
. (78)

In this case, these dimensionless parameters represent, respectively, the ratio of (time to
be transported:time to diffuse) across the cell (D), the ratio of (time spent unbound:time
to walk) across the cell (ε), and the ratio of (time spent unbound:time spent bound)
(ka).
Case II: g is Michaelian or Hill

g(p) = gm
pn

Kn + pn
, n = 1, 2, . . . .

Then, (76) becomes

v

L0

∂(ρ pR
�
)

∂t�
= −v

L0

∂(ρ pR
�
)

∂x�
+ ku

(
P(x)

kb
ku

gm(ρ pU
�
)n

[Kn + (ρ pU�
)n] − (ρ pR

�
)

)
, (79a)

v

L0

∂(ρ pL
�
)

∂t�
= v

L0

∂(ρ pL
�
)

∂x�
+ ku

(
(1 − P(x))

kb
ku

gm(ρ pU
�
)n

[Kn + (ρ pU�
)n] − (ρ pL

�
)

)
,

(79b)
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v

L0

∂(ρ pU
�
)

∂t�
= D0

L2
0

∂2(ρ pU
�
)

∂x�2
+ ku

(
ρ pR

� + ρ pL
� − kb

ku

gm(ρ pU
�
)n

[Kn + (ρ pU�
)n]

)
.

(79c)

Define a new constant A ≡ K/ρ. This constant is the ratio of the motor concen-
tration at which the binding rate is half-maximal to the average motor density in the
cell. Divide numerator and denominator of the Hill function by ρn . Further, divide
every term in the equations by vρ/L0 as before. Then we obtain after rearranging and
dropping the starred notation is

∂ pR

∂t
= −∂ pR

∂x
+ 1

ε

(
P(x)ka

(pU)n

[An + (pU)n] − pR
)

, (80a)

∂ pL

∂t
= ∂ pL

∂x
+ 1

ε

(
(1 − P(x))ka

(pU)n

[An + (pU)n] − pL
)

, (80b)

∂ pU

∂t
= D

∂2 pU

∂x2
+ 1

ε

(
pR + pL − ka

(pU)n

[An + (pU)n]
)

, (80c)

where D and ε are as before, but ka now depends on whether g is a Michaelis–Menten
or a Hill function. This holds for any Hill coefficient n. Note that, in particular, for the
case n = 1, which is the Michaelian case considered, we have that

∂ pR

∂t
= −∂ pR

∂x
+ 1

ε

(
P(x)ka

pU

[1 + cpU] − pR
)

, (81a)

∂ pL

∂t
= ∂ pL

∂x
+ 1

ε

(
(1 − P(x))ka

pU

[1 + cpU] − pL
)

, (81b)

∂ pU

∂t
= D

∂2 pU

∂x2
+ 1

ε

(
pR + pL − ka

pU

[1 + cpU]
)

, (81c)

where c ≡ 1/A = ρ/K . In (80) and (81) ka is defined by

ka ≡ kbgm
kuρ

(Hill), ka ≡ kbgm
kuK

, (Michaelis–Menten). (82)

In either case, the parameter ka describes the ratio of time spent bound to the time
spent unbound, mediated by the nonlinear binding kinetics.

Finally, we scale the boundary conditions in (5) to get

(
pR − pL − D

∂pU

∂x

)∣∣∣∣
x=0,1

= 0, (83)

together with

pR(0, t) = 0 and pL(1, t) = 0. (84)
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B.2 Kinesin–Dynein Model Scaling

Define kc ≡ krl − klr. Then the model can be written as

∂pR

∂t
= −vr

∂pR

∂x
+ kbQpU − ku p

R − kc p
R pL, (85a)

∂pL

∂t
= vl

∂pL

∂x
+ kb(1 − Q)pU − ku p

L + kc p
R pL, (85b)

∂pU

∂t
= D0

∂2 pU

∂x2
− kb p

U + ku(p
R + pL). (85c)

Scale all variables as before. Then terms of the form (kc/ku)pR pL will lead to the
form (kc/ku)ρ pR

�
ρ pL

�
, so that what remains, after cancelling out a factor of vrρ/L0

from every term in each equation, and dropping the starred quantities, is

∂pR

∂t
= −∂pR

∂x
+ 1

ε

(
kaQpU − pR − kpR pL

)
, (86a)

∂pL

∂t
= v

∂pL

∂x
+ 1

ε

(
ka(1 − Q)pU − pL + kpR pL

)
, (86b)

∂pU

∂t
= D

∂2 pU

∂x2
+ 1

ε

(
pR + pL − ka p

U
)

, (86c)

where the parameters are

v ≡ vl

vr
, D ≡ D0

vrL0
, ε ≡ vr

kuL0
, ka ≡ kb

ku
, k ≡ kcρ

ku
= (krl − klr)ρ

ku
.

(87)

Hereρ is the average density ofmotors inside the cell. These dimensionless parameters
represent, respectively, the (left:right) walking speed ratio (v), the ratio of (time to be
transported:time to diffuse) across the cell (D), the ratio of (time spent unbound:time
to walk) across the cell (ε), the ratio of (time spent unbound:time spent bound) (ka),
and the turning parameter k, which represents the ratio of (net right–left direction
switches:unbinding rate). We comment that the average density of motors ρ enters
into the turning rate parameter due to the nonlinearity of the model with respect to the
turning of motors when they collide on a MT.

B.2.1 Details of QSS Reduction of Kinesin–Dynein Model

Next, we provide some details of the QSS reduction of the kinesin–dynein model.
Upon setting f2 = f3 = 0 in (49) we get the two equations

kpR pL = pL − ka(1 − Q)pU, −ka p
U + pR + pL = 0. (88)
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It is convenient to let pL be the free variable and parameterize the quasi-steady-state
in terms of pL = α. By solving (88) for pR and pU, we get the quasi-steady-state
solution p0 as given in (51). We then readily show that the nonzero eigenvalues λ±
of the Jacobian of the kinetics satisfy the quadratic equation given in (52) and (53).
A necessary and sufficient condition for Re(λ±) < 0 is that σ1 < 0 and σ2 > 0 in
(53). To establish this result we need some properties of H(Q) defined in (53). We
first observe that H(0) = 1, so that trivially σ1 < 0 and σ2 > 0 when Q = 0. Then,
since H ′(Q) = −(1 + kα)/(1 + kα − Q)2 < 0, it follows that σ1 < 0 and σ2 > 0
on 0 ≤ Q ≤ 1 provided that we can show that σ1 < 0 and σ2 > 0 when Q = 1. These
inequalities do hold at Q = 1, since by using H(1) = (kα − 1)/(kα) we readily
obtain that σ1 = −1 − ka − kα and σ2 = kα(1 + ka) > 0 when Q = 1. This proves
that Re(λ±) < 0 for any Q in 0 ≤ Q ≤ 1. As a result, p0 defined in (51) is a slow
manifold in the sense of Definition (3.1) for any Q in 0 ≤ Q ≤ 1. Finally, by using
p0 and the operator M , as defined in (49), in the solvability condition (24), we readily
derive the QSS PDE model (54).

B.3 Myosin Model Scaling

We carry out similar scaling for the myosin model characterized by

∂pW

∂t
= −vw

∂pW

∂x
− k̂bw

(
pB

)2
pW + k̂b p

U − ku p
W, (89a)

∂pB

∂t
= vb

∂pB

∂x
+ k̂bw

(
pB

)2
pW − ku p

B, (89b)

∂pU

∂t
= Df

∂2 pU

∂x2
− k̂b p

U + ku(p
B + pW). (89c)

When we scale variables just as before, the terms
(
pB

)2
pW will lead to the forms

(
ρ pB

�
)2

(ρ pW
�
). This will result in a constant factor ρ2 that remains after cancelling

out ρ from all terms in the equation. As a result, we will obtain, upon dropping the
starred quantities,

∂pW

∂t
= −∂pW

∂x
+ 1

ε

(
−kbw

(
pB

)2
pW + kb p

U − pW
)

, (90a)

∂pB

∂t
= v

∂pB

∂x
+ 1

ε

(
kbw

(
pB

)2
pW − pB

)
, (90b)

∂pU

∂t
= D

∂2 pU

∂x2
+ 1

ε

(
pB + pW − kb p

U
)

, (90c)

where the dimensionless parameters v, D, ε, kbw, and kb are defined by

v ≡ vb

vw
, D ≡ Df

vwL0
, ε ≡ vw

kuL0
, kbw ≡ k̂bwρ2

ku
, kb ≡ k̂b

ku
. (91)

123



Application of Quasi-Steady-State Methods to Nonlinear… 1967

Recall that ρ is the average density of motors inside the cell. These dimensionless
parameters represent, respectively, the bound:walking motor speed ratio (v), the ratio
of (time to be transported:time to diffuse) across the cell (D), the ratio of (time spent
unbound:time to walk) across the cell (ε), the interaction parameter kbw, which repre-
sents the ratio of (net rate of collisions that result in direction change:unbinding rate),
and the ratio of (time spent unbound:time spent bound) (kb). Note that the average
density of motors ρ enters into the interaction rate parameter due to the nonlinearity
of the model with motor–motor interaction.

B.4 Non-Spatial Myosin Model

In Sect. 4.3, we seek to determine whether the Type I or Type II QSS PDE better
approximates the behaviour of the full myosin system. To understand the behaviour,
we study the non-spatial myosin model kinetics through a phase-plane analysis, where
the advection and diffusive processes in (90) are neglected.

The non-spatial myosin model kinetics are described by the following system of
ODEs:

dpW

dt
= −kbw

(
pB

)2
pW + kb p

U − pW,
dpB

dt
= kbw

(
pB

)2
pW − pB,

dpU

dt
= pB + pW − kb p

U, (92)

where time has been scaled to remove the ε dependence. Due to conservation of mass,
we can write pU = 1− pW − pB. This facilitates the reduction of this system of three
equations to a system of two equations:

dpW

dt
= −kbw

(
pB

)2
pW + kb

(
1 − pW − pB

)
− pW, (93a)

dpB

dt
= kbw

(
pB

)2
pW − pB. (93b)

With kbw = 25 and kb = 3, a phase-plane analysis (see Fig. 17) reveals the existence
of an unstable manifold which divides the (pW, pB) plane into two regions. For initial
conditions below this unstable manifold, the system converges to a steady-state with
pB = 0, but pW > 0, as in Type I QSS. For initial conditions above this unstable
manifold, the system converges to a steady-state with pB > 0, as in Type II QSS.

Appendix C: Numerics for the Steady-State of the QSS PDEs

In this appendix we show how to numerically compute the steady-state solution of the
QSS PDEs by recasting the non-local problem into an initial boundary value problem
(IBVP), which is amenable to a numerical shooting method.
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Fig. 17 Phase-plane analysis of
the non-spatial myosin model. A
phase-plane analysis of the
non-spatial myosin model (93)
reveals the existence of an
unstable manifold that divides
(pW, pB) space into two
regions. For initial conditions
below the unstable manifold, the
system tends to a steady-state
with pB = 0, but for initial
conditions above the unstable
manifold, the system tends to a
steady-state with pB > 0 (Color
figure online)

For the QSS PDE associated with the kinesin model (29) of Sect. 4.1, the steady-
state problem is

dα

dx
= ka

D
[2P(x) − 1] g(α),

∫ 1

0
(kag(α) + α) dx = 1, (94)

where g(α) is either the saturated binding model (34) or the Hill function (48). To
reformulate (94), we define N (x) by

N (x) ≡
∫ x

0
(kag[α(η)] + α(η)) dη − 1. (95)

Then, (94) is equivalent to the ODE system

dα

dx
= ka

D
[2P(x) − 1] g(α),

dN

dx
= kag(α) + α, (96)

with N (0) = −1. We then specify α(0) = β, where β is a value to be determined.
We solve the IBVPs (96) for various values of β and output the quantity N (1;β). In
this numerical shooting procedure, Newton’s method on β is then used to satisfy the
required terminal constraint N (1;β) = 0.

A similar approach can be used to compute steady-state solutions of the QSS PDE
(54) for the kinesin–dynein model of Sect. 4.2 subject to the total mass constraint∫ 1
0 y(x) dx = 1. In place of (96) we obtain
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dα

dx
= −ka

D

[v(kα + 1 − Q) − Q]

(kα + 1 − Q)2 + Q(1 − Q)
(kα + 1 − Q) α,

dN

dx
=

(
1 + 1

ka

)
(kα + 1)α

kα + 1 − Q
, (97)

with N (0) = −1 and α(0) = β, where β > 0 is a shooting parameter determined
numerically by satisfying the terminal constraint N (1;β) = 0.

Finally, we consider steady-state solutions of the QSS PDE (68) for the myosin
model of Sect. 4.3 subject to the total mass constraint

∫ 1
0 y(x) dx = 1. In place of

(96) we get

dα

dx
= −kb

D

(
vkbwα2 − 1

)

kbwα2 − 1
α,

dN

dx
= (kb + 1)

kbkbw

(kbwα2 + 1)

α
, (98)

with N (0) = −1 and α(0) = β, where β > 0 is computed numerically to satisfy
the constraint N (1;β) = 0. A steady-state solution exists only when kbwα2 > 1 on
0 ≤ x ≤ 1.

To numerically determine the boundary in parameter space where kbwα2 > 1 holds
on 0 ≤ x ≤ 1 for the steady-state when 0 < v < 1, it is convenient to reformulate
(98). We define A(x) ≡ √

kbwα(x) to transform (98) to

dA

dx
= −c1

(
vA2 − 1

)

A2 − 1
A,

dN

dx
= c2

(
A2 + 1

)

A
,

where c1 ≡ kb
D

, c2 ≡ kb + 1

kb
√
kbw

. (99)

A steady-state solution to the QSS PDE exists only when A(x) > 1 on 0 ≤ x ≤ 1.
Since (99) implies that A(x) is monotonic in x whenever A > 1, then it is possible
that A → 1+ only for x → 0+ or x → 1−. However, since A → 1/

√
v > 1 on the

infinite line as x → ∞, it follows that we can only have A → 1+ as x → 0+. To
determine the local behaviour as A → 1+ and x → 0+, we calculate from (99) that
dA/dx ∼ c1(1 − v)/[2(A − 1)] and dN/dx ∼ 2c2. This yields the local behaviour

A ∼ 1 + √
c1(1 − v)x, N ∼ −1 + 2c2x, as x → 0+. (100)

For a fixed v and D > 0, with 0 < v < 1, to determine the region in the parameter
space kbw versus kb where A(x) > 1 on 0 ≤ x ≤ 1, we proceed as follows. We
fix c1 in (99), numerically integrate the IBVPs (99) with the local behaviour (100)
imposed at some x = δ, with 0 < δ � 1, and numerically shoot on the value of
c2 for which N (1; c2) = 0. From (99), this determines kb and kbw as kb = c1D and
kbw = [(kb + 1)/(kbc2)]2.
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Appendix D: Boundary Layer Analysis

In this appendix we determine the appropriate boundary conditions for our QSS PDEs,
and we analyse the boundary layers near x = 0, 1. We focus our discussion on general
three-component systems on 0 ≤ x ≤ 1 of the form

p1t = −v1 p1x + f1
ε

, p2t = v2 p2x + f2
ε

, p3t = Dp3xx + f3
ε

, (101a)

where v1, v2, D are positive O(1) constants, ε � 1, and the kinetics f j =
f j (p1, p2, p3) for j = 1, . . . , 3, satisfy the conservation condition

f1 + f2 + f3 = 0. (101b)

By imposing the mass constraint ∂t
∫ 1
0 (p1 + p2 + p3) dx = 0, and setting

p1(0, t) = p2(1, t) = 0, we obtain the following boundary conditions for (101a):

Dp3x + v2 p2 − v1 p1 = 0, at x = 0, 1 ; p1(0, t) = 0, p2(1, t) = 0.

(101c)

We assume that there is a unique one-parameter family p0(α) ≡ (p01(α), p02(α),

p03(α))T of solutions to the leading-order problem f = ( f1, f2, f3)T = 0, and that p0

is a slow manifold for (101) in the sense of Definition 3.1. This is the leading-order
outer solution, valid away from boundary layers at x = 0, 1. Then, as shown in Sect.
3, α = α(x, t) satisfies the QSS PDE (24a), which can be written as

∂t

(
p01 + p02 + p03

)
= ∂x

(
−v1 p

0
1 + v2 p

0
2 + D∂x p

0
3

)
. (102)

We now determine an appropriate boundary condition for (102) as x → 0+ by
analysing the boundary layer structure for (101) near the left endpoint x = 0. As
x → 0+, we obtain from the outer solution that

p1 = p010 + O(x), p2 = p020 + O(x), p3 → p030 + x
dp03
dx

∣∣
x=0 + · · · ,

(103)

where we have defined p0j0 ≡ p0j (α(0, t)) for j = 1, . . . , 3.
We will only analyse in detail the region near x = 0, as a similar analysis can be

done near x = 1. For t = O(1) the two possible dominant balances for the spatial
derivatives in (101a) near x = 0 are x = O(

√
ε) and x = O(ε). On the wider such

scale, we let ξ = x/
√

ε to obtain from (101a) that

p1t = − v1√
ε
p1ξ + f1

ε
, p2t = v2√

ε
p2ξ + f2

ε
, p3t = D

ε
p3ξξ + f3

ε
. (104)
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To leading-order we obtain that f1 = f2 = 0, so that from (101b) we must have
f3 = 0. As a result, we obtain to leading-order that p1 ∼ p010, p2 ∼ p020, and
p3 ∼ p030. This implies that our QSS approximation is still valid when x = O(

√
ε).

Next, we analyse the region where x = O(ε). Upon introducing η ≡ x/ε, we
obtain from (101a) that

εp1t = −v1 p1η + f1, εp2t = v2 p2η + f2, εp3t = D

ε
p3ηη + f3. (105a)

From (101c), the boundary conditions for this system are

D

ε
p3η + v2 p2 − v1 p1 = 0, at η = 0 ; p1(0, t) = 0, (105b)

while the asymptotic matching conditions, as obtained from (103), are that

p1 ∼ p010, p2 ∼ p020, p3 ∼ p030 + εη
dp03
dx

∣∣
x=0, as η → ∞. (105c)

For t = O(1), we neglect the asymptotically negligible left-hand sides of (105a) to
obtain

− v1 p1η = − f1, v2 p2η = − f2,
D

ε
p3ηη = − f3. (106)

By adding the equations in (106), and using the conservation condition (101b), we
obtain upon integration in η that, for all η > 0,

D

ε
p3η − v1 p1 + v2 p2 = A, (107)

where A is independent of η. By evaluating this expression at η = 0, (105b) yields
that A = 0. With A = 0, we then evaluate (107) as η → ∞ by using the matching
condition (105c). This yields

D
dp03
dx

− v1 p
0
1 + v2 p

0
2 = 0, at x = 0. (108a)

This key result shows that to obtain the boundary condition at x = 0 for the
QSS PDE for α(x, t) we can simply substitute the outer approximation p1 = p01(α),
p2 = p02(α), and p3 = p03(α), into the first condition of (101c). In this sense, the
QSS PDE inherits the no-flux boundary condition (101c) at x = 0. We remark that a
similar analysis can be done near x = 1, with the analogous result that

D
dp03
dx

− v1 p
0
1 + v2 p

0
2 = 0, at x = 1. (108b)
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To complete the boundary layer analysis near x = 0, we expand

p3 = p030 + ε

D
P3 + · · · , (109)

and obtain from the first two equations in (106), together with (107) with A = 0, the
following boundary layer problem on 0 < η < ∞:

v1 p1η = f1
(
p1, p2, p

0
30

)
; p1(0) = 0, p1 → p010 as η → ∞, (110a)

v2 p1η = − f2
(
p1, p2, p

0
30

)
; p2 → p020 as η → ∞, (110b)

P3η = v1 p1 − v2 p2; P3η ∼ D
dp03
dx

∣∣
x=0 as η → ∞. (110c)

Although the first two equations for p1 and p2 are uncoupled fromP3, in general
it is not possible to calculate p1 and p2 analytically, especially when f1 and f2 are
nonlinear in p1 and p2. However, the system for p1 and p2 are readily studied in the
phase-plane.

We remark that a similar boundary layer analysis can be done near x = 1. To study
this boundary layer, we now define η = (1 − x)/ε. We readily find in place of (110a)
and (110b) that

v1 p1η = − f1
(
p1, p2, p

0
31

)
; p1 → p011 as η → ∞, (111a)

v2 p1η = f2
(
p1, p2, p

0
30

)
; p2(0) = 0, p2 → p021 as η → ∞, . (111b)

Here p0j1 ≡ p0j (α(1, t)), for j = 1, . . . , 3.

D.1 The Kinesin Model

For the kinesin model (25) of Sect. 4.1, the boundary layer system (110) can be solved
explicitly. With the QSS approximation p0, as given in (27), we identify v1 = v2 = 1,
p1 = pR, p2 = pL, and p3 = pU. From (27), we calculate that p010 = kaP(0)g(α0),
p020 = ka [1 − P(0)] g(α0), and p030 = α(0), where α0 ≡ α(0, t). Therefore, using
the reaction kinetics in (25), (110) becomes

p1η = p010 − p1, p2η = −p020 + p2, P3η = p1 − p2. (112)

The solution with p1(0) = 0 and p2 → p020 as η → ∞, is simply p1 = p010(1−e−η),
and p2 = p020. Then, P3 is obtained up to a constant by integrating the last equation
in (112). In this way, we obtain the boundary layer solution for x = O(ε) that

pR ∼ p010
(
1 − e−x/ε) , pL ∼ p020,

pU = p030 + ε

D

(
ηD

dα

dx

∣∣
x=0 + p010e

−η + A3

)
, (113)
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where the constant A3 can only be determined from a two-term outer QSS solution,
which is intractable analytically. This analysis shows two key features. Firstly, the
right-moving motors have a classic boundary layer behaviour when x = O(ε). Sec-
ondly, for x = O(ε) the unbound kinesin motor density pU differs from its outer
approximation only by an error O(ε/D). A similar calculation can be done for the
boundary layer near x = 1 using (111). We leave the details to the reader.

D.2 The Kinesin–Dynein Model

For the kinesin–dynein model (49), the boundary layer equations (110) for the layer
near x = 0 is analysed via the phase-plane. Using f in (49), and setting v1 = 1 and
v2 = v, (110a) and (110b) on 0 < η < ∞ become

p1η = −p1 − kp1 p2 + kaQp030, p1(0) = 0,

p1 → p010 ≡ Qα0

kα0 + 1 − Q
as η → +∞, (114a)

p2η = −1

v

[
ka(1 − Q)p030 − p2 + kp1 p2

]
, p2 → α0 as η → +∞,

(114b)

where p030 = (kα0 + 1)α0/[ka(kα0 + 1 − Q)]. To analyse (114) in the phase-plane,
it is convenient to introduce new variables q1(η) and q2(η) defined by

p1 = r2
k
q1, p2 = r1

k
q2, where r1 = kα0, r2 ≡ Qr1

r1 + 1 − Q
.

(115)

In terms of q1 and q2, (114) transforms to the two-component dynamical system

q1η = g1(q1, q2) ≡ (1 − q1) + r1(1 − q1q2), q1(0) = 0,

q1 → 1 as η → +∞, (116a)

q2η = g2(q1, q2) ≡ −1

v
[1 − q2 + r2(q1q2 − 1)] , q2 → 1 as η → +∞.

(116b)

As a function of r1, we have r2 = 0 when r1 = 0, r2 → Q < 1 as r1 → ∞, and
that r2 is monotone increasing in r1 since dr2/dr1 = [Q(1 − Q)]/(r1 + 1 − Q)2 > 0
holds for 0 < Q < 1. It follows that 0 < r2 < 1 for any r1 > 0.

By calculating the Jacobian Jg of g1 and g2 at the equilibrium state q1 = q2 = 1,
we find that

det(Jg) = − 1

v (kα0 + 1 − Q)

[
(1 − Q)(1 + 2kα0) + kα2

0

]
< 0,
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Fig. 18 Qualitative analysis of boundary layer behaviour of the kinesin–dynein model. Phase portraits of
q2 versus q1 for boundary layer solutions of the kinesin–dynein model near x = 0 (a) and near x = 1 (b)
from (116) and (117), respectively. In a there is a unique value q2 = q02 at q1 = 0 for which (116) has a

solution with (q1, q2) → (1, 1) as η → +∞. In b there is a unique value q1 = q01 at q2 = 0 for which
(117) has a solution with (q1, q2) → (1, 1) as η → +∞. The parameter values of r1, r2, and v for b are
those consistent with Fig. 7. a r1 = 2.0, r2 = 0.5, v = 0.5. b r1 = 1.69, r2 = 0.85, v = 0.5 (Color figure
online)

so that q1 = q2 = 1 is a saddle point for the dynamics. In Fig. 18a we plot the
phase portrait q2 versus q1 and nullclines for (116) for representative values r1 = 2,
r2 = 0.5, and v = 0.5. We observe that the q2 nullcline intersects the q2 axis at
q2 = 1 − r2 ∈ (0, 1) since 0 < r2 < 1. This plot indicates the existence of a unique
value q2(0) = q02 > 1 − r2 for which (116) has a solution with (q1, q2) → (1, 1)
as η → +∞. This qualitative analysis confirms the existence of a boundary layer
solution near x = 0 for the kinesin–dynein model for all range of parameters.

A similar phase-plane analysis can be performed to analyse the boundary layer
system (111) near x = 1. In place of (116), we obtain that

q1η = −g1(q1, q2) ≡ − [(1 − q1) + r1(1 − q1q2)] , q1 → 1 as η → +∞,

(117a)

q2η = −g2(q1, q2) ≡ 1

v
[1 − q2 + r2(q1q2 − 1)] , q2(0) = 0

q2 → 1 as η → +∞, (117b)

where in place of (115), r1 and r2 are now defined by r1 = kα1 and r2 ≡
Qr1/(r1 + 1 − Q), where α1 = α at x = 1. In Fig. 18b we plot the phase portrait and
nullclines for (117) for r1 = 1.69, r2 = 0.85, and v = 0.5, which corresponds to the
parameter values used in the caption of Fig. 7. This phase portrait shows the existence
of a unique value q1(0) = q01 for which (117) has a solution with (q1, q2) → (1, 1) as
η → +∞. Our computations yield q01 ≈ 1.95, so that from (115) we get p1 ≈ 0.83
at x = 1.
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D.3 The Myosin Model

For the full myosin transport model (90), the boundary layer equations (110a)–(110b)
near x = 0 can be studied qualitatively in the phase-plane. Upon setting v1 = 1 and
v2 = v, (110a) and (110b) on 0 < η < ∞ become

p1η = −kbw p1 p
2
2 − p1 + kb p

0
30, p1(0) = 0,

p1 → p010 ≡ 1

kbwα0
, as η → +∞, (118a)

p2η = −1

v

(
kbw p1 p

2
2 − p2

)
, p2 → α0 as η → +∞, (118b)

where p030 = (α0 + 1/[kbwα0]) /kb and α0 = α(0, t). We conveniently introduce new
variables q1 and q2 defined by

p1 = 1

kbwα0
q1, p2 = α0q2, (119)

so that in terms of r ≡ kbwα2
0, (118) becomes

q1η = g1(q1, q2)

≡ −r
(
q1q

2
2 − 1

)
+ 1 − q1, q1(0) = 0, q1 → 1 as η → +∞,

(120a)

q2η = g2(q1, q2) ≡ −1

v

(
q1q

2
2 − q2

)
, q2 → 1 as η → +∞. (120b)

At the equilibrium state q1 = q2 = 1, the determinant of the Jacobian Jg of g1 and
g2 is det(Jg) = (1 − r)/v. Therefore, det(Jg) < 0 and q1 = q2 = 1 is a saddle point
if r ≡ kbwα2

0 > 1. In Fig. 19a we plot the phase portrait of q2 versus q1 and nullclines
for (120) for the representative values r = 5 and v = 0.5. We observe that there is
a unique value q2(0) = q02 for which (120) has a solution with (q1, q2) → (1, 1) as
η → +∞. As such, there is always a boundary layer solution near x = 0 for the
myosin model.

A similar boundary layer system near x = 1 can be obtained from (111) for the
myosin model. In place of (120), we obtain that

q1η = −g1(q1, q2) ≡ r
(
q1q

2
2 − 1

)
− 1 + q1, q1 → 1 as η → +∞,

(121a)

q2η = −g2(q1, q2) ≡ 1

v

(
q1q

2
2 − q2

)
, q2(0) = 0 q2 → 1 as η → +∞,

(121b)

where r is now defined by r = kbwα2
1 with α1 = α(1, t). Although the equilibrium

point q1 = q2 = 1 is a saddle point of (121) whenever r > 1, the phase portrait in the
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Fig. 19 Qualitative analysis of boundary layer behaviour of the myosin model. Phase portraits of q2 versus
q1 for boundary layer solutions of the myosin model near x = 0 (a) and near x = 1 (b) from (120) and
(121), respectively. In a there is a unique value q2 = q02 at q1 = 0 for which (120) has a solution with
(q1, q2) → (1, 1) as η → +∞. However, for the right boundary layer, the phase-plane in b there is no
value q1 = q01 > 0 at q2 = 0 for which (q1, q2) → (1, 1) as η → ∞. a r = 5, v = 0.5. b r = 5, v = 0.5
(Color figure online)

q2 versus q1 plane shown in Fig. 19b shows that there is no value q1(0) = q01 > 0 on
q2 = 0 for which (q1, q2) → (1, 1) as η → ∞.

As such, we conclude for the Type II QSS approximation (64) for the myosin model
that there is no steady-state boundary layer solution near x = 1 that allows the extra
boundary condition pB = 0 at x = 1 to be satisfied.
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