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ABSTRACT Migratory cells are known to adapt to environments that contain wide-ranging levels of chemoattractant. Although
biochemical models of adaptation have been previously proposed, here, we discuss a different mechanism based on mecha-
nosensing, in which the interaction between biochemical signaling and cell tension facilitates adaptation. We describe and
analyze a model of mechanochemical-based adaptation coupling a mechanics-based physical model of cell tension coupled
with the wave-pinning reaction-diffusion model for Rac GTPase activity. The mathematical analysis of this model, simulations
of a simplified one-dimensional cell geometry, and two-dimensional finite element simulations of deforming cells reveal that
as a cell protrudes under the influence of high stimulation levels, tension-mediated inhibition of Rac signaling causes the cell
to polarize even when initially overstimulated. Specifically, tension-mediated inhibition of Rac activation, which has been exper-
imentally observed in recent years, facilitates this adaptation by countering the high levels of environmental stimulation. These
results demonstrate how tension-related mechanosensing may provide an alternative (and potentially complementary) mecha-
nism for cell adaptation.
SIGNIFICANCE Migratory cells, such as human neutrophils, encounter environments that contain wide-ranging levels of
chemoattractant. To move, these cells must maintain an organized front-rear signaling polarity despite this wide variation in
environmental stimuli. Past research has demonstrated a number of biochemical-based mechanisms by which cells adapt
to variable signal levels. Here, we demonstrate that the interplay between Rho-family GTPase signaling and tension-
mediated feedback loops may provide an alternative mechanochemical mechanism for adaptation to high levels of
signaling.
INTRODUCTION

Human neutrophils and other migratory cells are able
adapt to environments that contain wide-ranging levels of
chemoattractant to maintain polarity. How does this
adaptation occur? Models of adaptation based on biochem-
ical processes such as receptor occupancy or receptor
arrangement (1) have long been proposed. Here, we
demonstrate that well-established mechanochemical inter-
actions between Rac signaling and protrusion-related
changes in cell tension can facilitate adaptation to maintain
polarity when cells are exposed to wide-ranging levels of
chemoattractant.
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In the context of cell signaling, adaptation refers to the
ability of cells to adjust to high levels of signaling or stim-
ulation. Most signal response systems have a range of inputs
over which they are sensitive to differences. When stimulus
levels are sufficiently high to saturate the underlying regula-
tory system, the system loses its ability to distinguish
signaling levels. For migration, cells must be able to adapt
to higher stimulus levels as they proceed closer to the attrac-
tant source. In neutrophil migration, the Rho-family GTPase
Rac rapidly polarizes to orient the cell in the direction of the
stimulus (2,3). Interestingly, when these cells are subjected
to high levels of stimulation, Rac first becomes highly acti-
vated throughout the cell and subsequently polarizes (3).
Thus, in response to high levels of stimulation, these cells
first adapt and then subsequently polarize. It has been previ-
ously demonstrated that feedback from cell tension to
GTPase activation causes competition between multiple
cellular protrusions (Fig. 1 B; (4,5)), ensuring that the cell
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A B FIGURE 1 Overview of the mechanochemical

feedback model and observed neutrophil behavior.

(A) Schematic of mechanochemical feedback.

Active (respectively inactive) Rac GTPases are

assumed to be bound (respectively unbound) to

the membrane and, therefore, slow (respectively

fast) diffusing. Active Rac is autoactivated and

causes cellular protrusions by activating down-

stream effectors. Cellular protrusions increase me-

chanosensing, which increases the deactivation

rate of Rac. (B) Shown is a cartoon of the observed neutrophil behavior in a chemoattractive environment. A resting neutrophil is washed in chemoattractant,

causing multiple sites of protrusive activity (within 20 s after stimulation). Subsequently, the cell adapts to the high signaling environment and polarizes to

form a single leading front (�60 s after stimulation). (B) is adapted from Fig. 3 B of (5) and the timescales are estimated from Fig. 2 A of (3). To see this figure

in color, go online.
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protrudes in only one direction at a time. Here, we demon-
strate that this feedback could also provide the cell with a
form of mechanochemical adaptation to high, saturating
levels of stimulation.

Our model mechanisms and results incorporate ideas
related to adaptation, polarity, and tension regulation, each
of which is well-studied in its own right. Adaptation has
been primarily studied from a biochemical perspective.
Models traditionally devised to explain the run-and-tumble
behavior of bacterial chemotaxis (6) typically incorporate
either negative feedback loops (7) or incoherent feed-for-
ward loops (8) to achieve perfect adaptation to step changes
in stimulus magnitude (9). These ideas were later combined
with Meinhardt’s concept of lateral inhibition for biological
pattern formation (10) to explain how cells could adapt to
environments and polarize in response to chemoattractant
if the stimulus simultaneously triggered both a local excit-
atory activator and global inhibitor (11,12). This mecha-
nism, known as LEGI (local excitation global inhibition),
and variants have been extensively studied experimentally
and theoretically (13–19). However, not all forms of adapta-
tion are biochemical in nature. Cells can adapt to sustained
mechanical stresses (20), for example, and large-scale
cytoskeletal structures are known to lead to adaptive
responses in cell migration to stiffness gradients in the
environment (21).

Similarly, polarity regulation itself has seen sustained in-
terest for multiple decades (22). Much (though not all) of
this study has been dedicated to understanding the role of
Rho GTPases, which regulate cytoskeletal remodeling, in
polarity generation (23). The wave-pinning model of polar-
ity (24–26), which we will build on here, demonstrated that
the conservative activation and inactivation dynamics of
these proteins are sufficient to explain the broad character-
istics of the polarization process. The cell polarity and cell
adaptation literature have been bridged by coupled models
that exhibit both adaptive and polarity characteristics (19);
however, such models are still biochemical in nature.
More recently, models that couple single-cell mechanics
and cytoskeletal mechanobiology with biochemistry have
begun to explore the role of mechanochemical feedback
loops on cell dynamics (3,4,27,28). However, the possible
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impact of cytoskeletal mechanics on adaptation during
migration has yet to be explored.

Here, we build on the well-studied wave-pinning model
of Rho GTPase dynamics (24–27,29–33) to analyze the con-
sequences of feedback between signaling, cell protrusion
(which affects tension), and tension. We include three crit-
ical assumptions into this model. First, Rac signaling (which
is modeled using wave-pinning dynamics) promotes protru-
sion of the cell membrane through downstream activation of
actin polymerization (23). Second, protrusion-related
changes in cell surface area result in an increase or decrease
in membrane tension. Third, membrane tension inhibits
GTPase signaling (4,5,34–41). We combine these assump-
tions into a moving-boundary mechanochemical model
(Fig. 1 A) that incorporates reaction-diffusion partial differ-
ential equations (PDEs) for Rac activity in a moving domain
and a continuum-based description of cellular mechanics
that affect the domain.

To understand the resulting model, we first use local
perturbation analysis (LPA) (42,43) and numerical bifurca-
tion analysis to analyze how tension changes resulting from
changes in cell size influence GTPase signaling. Results
indicate that increases in tension cause the cell to transit
from an overstimulated to a polarizable regime of the
GTPase signaling model. To test whether this adaptive
response induces polarization, we use one-dimensional
(1D) and two-dimensional (2D) minimal models to describe
cellular physics and simulate the reaction-diffusion Rac
signaling model in fully moving cells. Our purpose here is
not to develop a high-fidelity model of cellular biophysics
(see (44–55) for such models) or to propose an adaptation
mechanism to replace biochemical models such as LEGI.
Instead, our purpose is to use these models to assess how
cell protrusions, tension, and GTPase signaling interact to
provide an adaptive response that may act in parallel to other
biochemical adaptation mechanisms. Both 1D and 2D sim-
ulations demonstrate that the feedback between signaling
and tension does lead to adaptation in which the cell initially
protrudes everywhere in response to a high stimulus but sub-
sequently polarizes, as predicted. These results demonstrate
that the feedback for establishment of polarity via mem-
brane tension can be described using a wave-pinning model
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of Rac signaling and, more importantly, that mechanosens-
ing may (in addition to biochemical forms of adaptation)
facilitate adaptation of migratory cells to high signaling
levels.
MATERIALS AND METHODS

We will develop and analyze a model of the feedback between Rac

signaling, cell size change, and tension changes. The purpose here is to

use this model to study how these feedback loops may influence a cell’s

response to large stimuli. More specifically, we use this model to explore

the hypothesis that these feedback loops provide a mechanochemical

form of adaptation.

Here, we briefly outline the core elements of the model and analysis

approach. We provide further details in subsequent sections. The model

(illustrated in Fig. 1 A) builds on the well-studied wave-pinning model

of Rho GTPase dynamics (24–27,29–33) to integrate tension effects result-

ing from changes in cell surface area. At a broad level, this model incorpo-

rates the cycling of Rac between activated (membrane-bound) and

inactivated (cytosolic) states, Rac-mediated tension production (via cell

protrusion), and tension-mediated inhibition of Rac activation (see below

for further detail), all of which are well-established in neutrophil cells

(4,5,34–41).

Because addressing the questions of interest here involves nonlinear in-

teractions between signaling, shape change, and mechanics, we take several

steps to analyze the dynamics of this system, with each building in addi-

tional complexity. First, we use the LPA (a form of spatio-temporal bifur-

cation analysis) to approximately map out the parametric dynamics of the

system. Second, we study the effects of tension and cell size changes

over time using 1D fixed domain simulations of the spatial PDE model in

which tension and length are treated as parameters that we manually vary

over time. This allows us to manually simulate tension to understand its po-

tential effect on signaling dynamics. Third, we simulate a 1D moving-

boundary version of the model in which Rac promotes protrusion, leading

to cell size changes and tension effects. Finally, we simulate a 2D moving-

boundary version of this model, coupling continuum mechanics with Rac

signaling.
Reaction-diffusion Rac GTPase signaling model

We first describe the core model of Rac signaling that will be responsible

for regulating protrusion in this model. We adopt the well-studied wave-

pinning model (24–27,29–33) of GTPase activity. We consider Rac activity

in a 1D or 2D domain with no-flux boundary conditions at the cell periphery

and model the activity of both membrane-bound active Rac (R(x,t)) and

freely-diffusing cytosolic inactive Rac (Ri(x,t)) forms as illustrated in the

left part of Fig. 1 A. The nondimensionalized PDEs describing these dy-

namics in a stationary domain are as follows:

vR

vt
¼

�
bþ c

Rn

1þ Rn

�
Ri � dRþ DDR; (1a)

vRi

�
Rn

�

vt

¼ � bþ c
1þ Rn

Ri þ dRþ DiDRi: (1b)

The term in parentheses is a standard Hill function representation of au-

toactivation kinetics, with b representing a basal-activation rate and c the

magnitude of autoactivation (i.e., positive feedback). The parameter d is

the deactivation rate, and D and Di are the diffusion coefficients of the

active and inactive forms, respectively. The ratio D/Di is small because

membrane-bound diffusion is slower than cytoplasmic diffusion. Because

Rac cycles between inactive and active forms with no-flux boundary condi-
tions, the total amount is conserved as a function of time: ʃR(x,t) þ Ri(x,t)

dx ¼ RT. Full model and nondimensionalization details are in Supporting

Materials and Methods.
External chemoattractant stimulation and
feedback from tension

The two critical parameters of this model that we will focus on are the

basal-activation rate b and the deactivation rate d. The basal-activation

rate will be used to encode the level of external stimulation applied to the

cell. For example, application of a uniform stimulus will be modeled as

an increase in the parameter b as the Rac signaling pathway becomes acti-

vated upon external stimulation. The d parameter will be used to describe

tension (T)-mediated inhibition of signaling:

dðTÞ ¼ d0 þ d1T: (2)

In cases in which we are not explicitly modeling tension, wewill describe

the effects of tension through changes in the parameter d. For example, an

increase in tension will be assumed to increase d. Other functional forms

(e.g., Hill functions) of d(T) could, of course, be used. We use a linear func-

tion here for simplicity and to reduce the number of extraneous parameters

in the model.
LPA, bifurcation analysis, and steady-state
behavior

To approximately determine how stimulus level (b) and tension strength (d)

jointly affect the spatial dynamics of this system, we used LPA to analyze

the behavior of the PDE model in the bd plane. The LPA is an approximate

asymptotic analysis that predicts whether the model (Eq. 1) will respond

to a spatial perturbation (either small or large) and give rise to a spatial

pattern formation. More specifically, it helps identify regions of parameter

space associated with both linear instabilities (i.e., Turing regions) and

stimulus-induced patterning (in which large stimuli are required for a

response). The LPA has been demonstrated to be an effective analysis

tool for studying GTPase and other systems (29,31,33,56–60). An explana-

tion of the LPA method and a detailed step-by-step guide can be found in

the ‘‘Computational Tools’’ article by Holmes et al. (43) and the references

therein.

In practice, this method reduces the PDE system (Eq. 1) to an ordinary

differential equation (ODE) system that approximately describes the dy-

namics of an asymptotically localized perturbation. By mathematically

analyzing how the model system responds to this type of mathematically

convenient perturbation, we can efficiently assess whether the model will

give rise to spatial pattern formation and map its parameter space. This is

carried out by studying the reduced LPAODE system with numerical bifur-

cation software XPPAUT to determine the perturbed system’s behavior in

different parameter regimes (Fig. 2 A). Full details of the bifurcation anal-

ysis of the LPA ODE system can be found in Supporting Materials and

Methods, including a corresponding one-parameter bifurcation diagram

(Fig. S1).
1D mechanochemical model

Before moving to a full 2D changing domain model of the cell, we first

develop a simpler 1D changing domain model to provide a preliminary

analysis of the effects of tension and signaling feedback. To interrogate

the mechanosensing-adaptation hypothesis in a moving, 1D cell, we couple

the wave-pinning model for Rac activity to a simple spring-like mechanical

model of the deforming cell. The underlying assumption here is that our

simulated cells in 1D and 2D models capture the cell’s substrate contact

length or area that changes as the cytoskeleton is remodeled. We do not
Biophysical Journal 119, 1617–1629, October 20, 2020 1619
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FIGURE 2 Parameter regimes of polar and

nonpolar behavior and steady-state PDE solutions

on a stationary domain. (A) The local perturbation

analysis (LPA) reveals regimes of nonpolar (un-

shaded), stimulus-induced polarizable (blue shaded),

and Turing unstable steady state, i.e., polarizable

(red shaded), cell behavior in the bd plane. The dots

correspond to the parameters for steady-state Rac ac-

tivity profiles in (B)–(E). (B–E) Shown are steady-

state-simulated solutions to the PDEs. Initial condi-

tions R(x, 0) ¼ 0 except R(x, 0) ¼ 5 for x > 0.9 are

used in (B), (D), and (E). For (C), R(x, 0) ¼ 1 þ
sin(4px)/10 is used. Spatially homogeneous initial

conditions were used for the inactive amount to

ensure the total Rac (RT) is preserved: Riðx; 0Þ ¼
RT �

R 1

0
Rðx;0Þ dx. (B) Shown is the low Rac activity,

b ¼ 0.1 and d ¼ 7.5. (C) Shown is the polarized Rac activity, b ¼ 0.1 and d ¼ 3. (D) Shown is the polarized Rac activity in the Turing regime, b ¼ 4.5 and d ¼
7.5. (E) Shown is the high Rac activity, b¼ 4.5 and d¼ 3. The other parameters are D¼ 0.01, Di ¼ 10, c¼ 5, n¼ 6, and RT ¼ 2. To see this figure in color, go

online.
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explicitly model cell volume because the three-dimensional aspect is negli-

gible in crawling cells on a 2D substrate, and the predominant dynamics

occur on the 2D substrate contact area.

This minimal 1D deforming cell model consists of two components: 1)

an overdamped, elastic spring model of the cell and 2) an adapted version

of the Rac model to appropriately account for the changing domain. These

are coupled with two conditions. First, we assume that active Rac at the

cell ends can exert a protrusive force on the cell that opposes the restoring

linear elastic spring force. This protrusive force depends sigmoidally on

Rac activity at the end points. Second, the deactivation rate d increases lin-

early with tension according to Eq. 2. Here, we define tension to be the dif-

ference between the cell length L(t) and rest length ‘0: T ¼ L(t) � ‘0.

Together, these assumptions result in a moving-boundary problem in which

the Rac activity is transported within a time-dependent domain U(t) ¼
[x�(t), xþ(t)]:

vR

vt
þ v

vx
ðaRÞ ¼

�
bþ c

Rn

1þ Rn

�
Ri � dðTÞRþ D

v2R

vx2
;

(3a)

vR v
�

Rn
�

v2R
i

vt
þ
vx

ðaRiÞ ¼ � bþ c
1þ Rn

Ri þ dðTÞRþ Di
i

vx2
;

(3b)

with no-flux boundary conditions. We can determine the velocity field a(x,t)

throughout the cell body from the forces imposed at the cell ends because

we assume that the cell changes length isotropically (as in (61–64)). This

assumption means that as the cell length, L(t) ¼ xþ(t) � x�(t), changes,
each Lagrangian volume element will change proportionally to the total

length change (this is a simplifying approximation that will be relaxed in

the 2D model to follow). This relation specifies the flow a so that Rac is

transported in the domain accordingly. Full model details can be found in

Supporting Materials and Methods.

We assume that the movement of the cell’s end points depends on a linear

elastic restoring force and protrusive forces determined by Rac activity at

the end points:

g
dx�
dt

¼ kðxþ � x� � ‘0Þ � F�ðRðx�ðtÞ; tÞÞ; (4a)

dxþ

g

dt
¼ � kðxþ � x� � ‘0Þ þ FþðRðxþðtÞ; tÞÞ: (4b)
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Here, g is the viscosity, k is the spring constant, ‘0 is the rest length of the

spring, and the functions F5 describe the protrusive forces oriented out-

ward from the cell from R. Note that inertial effects are ignored as appro-

priate for modeling cell motion. We use a smoothed Heaviside function

for the Rac-dependent force function F5(R):

F5 ðRÞ ¼ fR
1þ e�2s1ðR�s0Þ: (5)

The parameters s1 and s0 control the sharpness and location of the switch,

respectively, and fR > 0 is the magnitude of the force due to Rac activity.
2D mechanochemical model

We use a 2D continuum mechanics model coupled to reaction-diffusion

PDEs for Rac activity to simulate 2D moving cells. The domain can freely

deform in response to Rac activity and mechanics (these changes are no

longer uniform as in 1D) because we assume that Rac activity leads to

expansion in the normal direction. For Rac activity within the domain,

we assume that the diffusion of active and inactive Rac is isotropic and

leave the reactions (Eq. 1) unchanged.

To describe the mechanical model of the cell, we use the conservation of

linear momentum from continuum mechanics. The inertial terms are ne-

glected, leading to an approximation of first-order dynamics. This dynam-

ical model relates the Cauchy stress s and displacement u fields:

V$sþ g _u ¼ 0; (6)

where g is the Stokes damping coefficient that represents the viscous

forces in the extracellular environment that resist cell motion and _u de-

notes the time derivative of displacement. We assume that intracellular

strains are captured by the standard linear Kelvin-Voigt viscoelastic

constitutive relation and, therefore, decompose s ¼ se þsv into the

elastic stress se and viscous stress sv. The elastic and viscous stresses

are related to the strain ε through linear isotropic constitutive models,

respectively:

se ¼ ltrðεÞIþ 2mε and sv ¼ bðltrð _εÞIþ 2m _εÞ: (7)

Here, I is the identity tensor, l and m are the Lam�e coefficients that are

related to the Young’s modulus E and Poisson’s ratio n, and b is a viscous

parameter related to the first and second coefficients of viscosity bl and bm
(see Supporting Materials and Methods for full details). We also use the 2D

plane stress conditions by assuming the z-directional thickness of the cell is
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small relative to the expanding area and contains no z-directional stresses.

Last, we use the infinitesimal, small-strain approximation for the kinematic

relationship between the strain and displacement:

ε ¼ 1

2

�
VuþðVuÞT�: (8)

The mechanical model is coupled to Rac activity through the same con-

ditions as in the 1D context but with three modifications. First, we assume

the protrusive force from active Rac acts normal to the membrane bound-

ary at any given point. Second, the deactivation rate now depends on a

proxy for 2D tension, T ¼ A(t) � A0, the difference between the area

A(t) and rest area A0. Third, we account for the deforming mechanical

domain in the solution of the reaction-diffusion system as follows. The

kinematic relationship between an initial and deformed geometry in

the mechanical model is described by the deformation gradient tensor

F ¼ I þ vu=ð vxÞ and its determinant J ¼ det(F). This relationship can

be used to map the spatial and temporal differential operators, and allows

the reaction-diffusion equations to be solved on a stationary reference

domain with fixed coordinates x:

vR

vt

����
x

¼ DJ�1Vx ,
�
JF�1F�TVxR

�þ f ðR;RiÞ � RJ�1vJ

vt
;

(9a)

vRi

�� �1
� �1 �T

� �1vJ
vt
��
x

¼ DiJ Vx , JF F VxRi � f ðR;RiÞ � RiJ
vt
;

(9b)

where the function f describes the wave-pinning reaction kinetics as before:

f(R,Ri) ¼ðb þ cðRn =1 þ RnÞÞRi. Full model details can be found in the

Supporting Materials and Methods.
Numerical methods

For the 1D model, we used a method of lines discretization with centered

differences in space and the Python function odeint from SciPy (65) to inte-

grate the resulting ODE system in time (odeint solves a system of ODEs us-

ing LSODA from the FORTRAN library odepack that automatically

switches between stiff and nonstiff methods (66,67)) and Matplotlib (68)

for visualization. We generated the steady-state Rac activity profiles in

Fig. 2, B–E with this method using N ¼ 1000 spatial grid points and

integrated until time t ¼ 100. We used the same method for all 1D PDE nu-

merics; however, we adapted the scheme for time-dependent parameters

and to simulate the mechanochemical model. To do so, we first transformed

the moving-boundary problem to a stationary domain. Next, we solved the

stationary-domain problem while simultaneously solving additional ODEs

for the location of the cell’s end points. By reversing the transformation, we

can obtain the full moving-boundary solution. This method is similar to that

used in other investigations of pattern formation on time-dependent do-

mains (61–64).

We used the finite element method to solve the 2D mechanochemical

model on the stationary reference domain (a circle of area 1) using the Py-

thon interface of the open source finite element modeling package FEniCS

(69). We used standard linear Lagrange elements for the reaction-diffusion

PDE and standard quadratic Lagrange elements for the mechanics equa-

tions with a mesh containing 4438 elements and 2325 nodes. In each

time-step, we first solved the mechanics equations to obtain the displace-

ment. Second, we calculate the deformation gradient tensor F and Jacobian

J ¼ det(F). Last, using these values, we solved the reaction-diffusion PDE

(Eq. 9) using a first-order backward Euler time-stepping scheme with Dt ¼
0.1 and FEniCS solve command with default parameters (FEniCS automat-

ically solves the linear mechanics problem and uses Newton’s method for
the nonlinear reaction-diffusion problem). Finally, we transform the solu-

tion to the moving cell by displacing the stationary domain according to

the displacements obtained from solving the mechanics equation.

We validated the numerical methods in both 1D and 2D by checking for

Rac mass conservation over time for each simulation and by checking that

the mass conservation error decreases as the spatial resolution increases

(Figs. S2 and S3). Polarity is assessed in two ways. First, we calculate

the difference between maximal and minimal Rac activity throughout the

domain. If this difference is sufficiently high (>0.1) we consider the cell

polarized. Second, we plot and calculate the interquartile range (IQR) of

the distribution of Rac activity throughout the cell at a given time. Polarized

cells have relatively large IQR and bimodal Rac activity distributions,

whereas nonpolar cells have smaller IQR and unimodal Rac activity. See

Supporting Materials and Methods for full details.
Parameters

We nondimensionalized the Rac signaling PDEs (see Supporting Materials

and Methods for details) because quantitative estimates of these parameters

are not available. The Rac signaling parameters (RT ¼ 2, n ¼ 6, and c ¼ 5,

respectively) were chosen to be consistent with prior studies (31) of the

wave-pinning motif that ensure a large polarizable region in the bd plane

(basal-activation rate b and deactivation rate d). We set D ¼ 0.01 and

Di ¼10 for our simulations because we are working with a unit length

cell, and it is known that the active and inactive forms have diffusion length

scales much smaller and larger, respectively, than the cell size (26). These

reaction-diffusion parameters are used in both 1D and 2D simulations.

For the 1D mechanical model, we chose damping coefficient g and

spring constant k so that viscous drag dominates the elastic restoring force

with g ¼ 1 and k ¼ 0.01 consistent with estimates that friction dominates

elastic forces by several orders of magnitude (64). Finally, we chose the

force magnitude from Rac, fR ¼ 0.001, and switch parameters, s0 ¼ 1

and s1 ¼ 10, so that changes in the cell length are smaller and slower

compared with Rac activity and such that the cell length changes are less

than 10% of the original length when Rac is uniformly highly activated

throughout the domain. This relatively small but significant area change

is similar to that observed in experiments (3).

For the 2D mechanical model, we used E ¼ 0.3 kPa for the Young’s

modulus as estimated for HL-60 cells (70) that serve as a valid model system

for human neutrophils (71) and n ¼ 0.45 for the Poisson’s ratio (n ¼ 0.499

represents incompressibility). The viscous parameter b¼ 10 s is the ratio of

the viscosity of the internal actin cytoskeleton bm ¼ 1 kPa,s (72) and shear
modulus m z 0.1 kPa (calculated from E and n). To determine the magni-

tude of the force due to Rac activity fR, we started with the maximal force

due to actin polymerization of 0.8 nN/mm (73), and subsequently, we chose

fR ¼ 0.3 nN/mm along with switch parameters s0 ¼ 1 and s1¼ 10 so that the

cell area changes are around or less than 30% of the original area when Rac

is uniform and highly activated throughout the domain as in Fig. 6 A. This

ensures that dilution effects (as the cell expands, conserved Rac becomes

more dilute) to Rac signaling dynamics are minimized. Finally, we

estimated the Stokes damping coefficient g ¼ 20 kPa,s/mm2 so that our

simulated cells in Fig. 6 B move with velocity z0.17 mm/s (1 spatial

unit in 60 sz 10 mm in 60 s) that is within the velocity range of migrating

neutrophils in experiments 0.1–0.2 mm/s (71,74).
RESULTS

LPA and steady-state behavior of the Rac
signaling model

We first use the LPA to approximately map the dynamics of
the signaling system in the bd plane. Results show that the
bd plane can be divided into three regions (Fig. 2 A): 1) a
Biophysical Journal 119, 1617–1629, October 20, 2020 1621
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nonpolar regime in which the only stable solutions to the
PDE are homogeneous steady states that correspond to a
uniform Rac activity level across the cell; 2) a polarizable
regime in which a sufficiently large spatially heterogeneous
stimulus can result in the formation of a polarized pattern;
and 3) a Turing regime in which the homogeneous steady
states are linearly unstable, leading to polarization. Numer-
ical simulations of the full PDE system verify the presence
of these different regimes. Fig. 2, B–E illustrates the stable
steady-state Rac distributions at the four marked points in
Fig. 2 A. In the case of point C, random noise from the ho-
mogeneous steady state is sufficient to generate patterning
(here, we used a small amplitude sine function). For D, a
large heterogeneous perturbation is required, consistent
with the LPA prediction. Neither B nor E is capable of
polarizing.
Proof of concept: fixed domain, 1D model with
manually varied tension

The bifurcation structure in Fig. 2 A suggests a possible
mechanism for adaptation in the presence of high levels of
signaling. Consider a high level of chemoattractant that
over-stimulates a cell, leading to uniform Rac activation
and protrusions across the periphery. In modeling terms,
this would correspond to an increase in the basal-activation
parameter (b), as illustrated in Fig. 3 A. This broad protru-
sion would lead to an increase in tension (and the parameter
d), moving the model cell back into the polarization regime.
In this way, uniform high levels of stimulation would
initially lead to cell wide protrusion that later gives way to
polarization as observed experimentally. In the coming sec-
tions, we explore this idea in more detail.

To begin, we first simulate the 1D spatial version of this
model on a fixed domain. Because the domain is fixed, we
A B

with uniform chemoattractant b ¼ 4 and jumps to the high Rac homogeneous

time: d(t) ¼ 3 þ 4/45(t � 5) to reach a maximum of 7 at t ¼ 50 (‘‘max d’’). As

because the homogeneous steady state is linearly unstable with parameters in th

color, go online.
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do not model cell size change and tension changes explicitly
but rather temporally change parameters to account for
those effects. To mimic uniform stimulation followed by
tension build up, we temporally vary the model parameters
in two phases. First, b is increased to mimic stimulation, as
indicated by the horizontal arrow on Fig. 3 A. Second, we
gradually increase d after the vertical arrow. Fig. 3 B shows
the results of this simulation. The initial resting cell be-
comes highly uniformly stimulated upon onset of stimula-
tion. As tension builds up, uniform Rac activation levels
decrease. Finally, without the application of any further
perturbation, the model cell polarizes. This suggests that
the mechanism of expansion followed by tension build up
may facilitate adaptation to high signaling levels. This
modeling experiment acts as a proof of concept of the me-
chanosensing-adaptation hypothesis.
1D mechanochemical moving-boundary model
demonstrates tension-mediated adaptation

Using the 1D mechanochemical model, we mimicked the
simulation depicted by the arrows in Fig. 3 A. A cell at
rest (uniform Rac activity and stable length) is stimulated
by suddenly increasing b. From this point on, all cellular
changes are driven by the mechanochemical model.
Fig. 4, B–D demonstrates the results of three simulations
that yield distinct results after an initial period of uniform
expansion. In Fig. 4 B, there is no tension-mediated deacti-
vation (d1 ¼ 0), and the cell expands approximately by 10%
but does not polarize. In Fig. 4 C, there is feedback from ten-
sion (d1 ¼ 80), and as predicted by prior simulations, after
the cell has sufficiently expanded, tension increases lead
to polarization. This confirms the plausibility of this mecha-
nosensing-adaptation hypothesis in a 1D deforming cell
model.
FIGURE 3 Time-dependent parameters on a sta-

tionary domain mimic observed neutrophil

behavior. (A) Shown is the trajectory of time-depen-

dent parameters in the bd plane mimicking uniform

activation followed by increased tension-mediated

inactivation. The shaded blue and red regions are

the same as in Fig. 2 A. Note that for a wide-range

of parameter values, a change in d (moving verti-

cally across the bifurcation diagram) can push the

cell into the polarizable or Turing regime in

response to a change in chemoattractant levels,

which modulate the activation of Rac through the

parameter b (moving horizontally). (B) Shown is

the kymograph of Rac activity in a stationary-

domain simulation for these time-dependent

parameters. The cell is at rest for t < 0 with b ¼
0.1 and d ¼ 3 (other parameters as in Fig. 2).

For 0 < t < 5 (‘‘max b’’), the cell is stimulated

steady state. For 5 < t < 50 (‘‘tension buildup’’), d increases linearly in

a result of the increasing d, the system re-polarizesdue to numerical error

e Turing regime (‘‘polarization onset’’). See Video S1. To see this figure in
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FIGURE 4 1D mechanochemical model and tension-mediated cell polarization. (A) The cell is modeled as a 1D elastic spring (spring constant k) and

viscous damping (damping constant g). The PDEs are solved in the domain U(t) ¼ [x�(t), xþ(t)], which varies over time because of forces F5 that depend

on Rac activity at the cell ends (x5(t)). (B) Uniform stimulation leads to cell expansion without feedback from tension d1 ¼ 0. Black lines show x�(t) and
xþ(t), and color shows Rac activity. For this simulation, the cell is initialized at rest at time t¼�5. The basal-activation rate parameter jumps from b¼ 0.1 to

b¼ 4 at time tR 0. Tension feeds back onto inactivation according to d(T)¼ d0þ d1T, T¼ L(t)� ‘0, d0¼ 3, and ‘0¼ 1. Other parameters are fR¼ 0.001, s1¼
10, s0¼ 1, g¼ 1, k¼ 0.01, c¼ 5, n¼ 6, RT¼ 2, D¼ 0.01, andDii¼ 10. The initial conditions are R(x, 0)¼ 0.05645 and Ri(x, 0)¼ RT � 0.05645. See Video

S2. (C) Uniform stimulation leads to cell expansion and polarization with feedback from tension d1 ¼ 80. Other parameters are as in (B). See Video S3. (D)

With b ¼ 2, uniform stimulation leads to indicate cyclical phases of polarization and relaxation. Other parameters and initial conditions are as in (C). See

Video S4. To see this figure in color, go online.
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The third simulation (Fig. 4 D) illustrates a different type
of dynamic that occurs at lower levels of stimulation. Here,
the cell undergoes oscillatory phases of polarized protrusion
followed by loss of polarity and relaxation. In this case, the
levels of stimulation are not sufficiently high to maintain po-
larization when tension-mediated inactivation increases. We
note that this polarization-relaxation oscillation may be a
consequence of the lack of explicit contractile signaling
along with the simplified nature of cellular mechanics
used in this model and is not observed in neutrophil stimu-
lation experiments (to our knowledge). However, such
length oscillations are observed in amoeboid cells during
stepping motility (75). Thus, although we include it here
for completeness, it is not the focus of this study.
Bifurcation and parameter space analysis

To supplement our proof of concept example simulations in
Figs. 3 and 4, we next sought to understand the relationship
between cell length changes, chemoattractant levels in the
environment (modeled by the parameter b), and the resulting
cell behaviors: polarized, polarization-relaxation oscilla-
tion, and nonpolarized. First, we used LPA on this system
in which length is itself a parameter. In this approach, length
affects the model in two ways: 1) it controls tension and 2)
leads concentration or dilution effects resulting from a fixed
total amount of GTPase being distributed on a smaller or
larger cell surface area.

We used LPA to map the cell behavior in the bL plane
(Fig. 5 A). Results demonstrate that the cell can exist in
either a nonpolar state, stimulus-induced polarized state,
or in a linearly unstable regime in which polarization results
from noise (Turing regime), depending on this cell length, L,
and the given basal-activation rate, b. Using this result, we
can now map the dynamics of the deforming 1D model in
terms of length rather than d.

In Fig. 5 A, we superimpose the length variations of the
simulated 1D cell onto the bifurcation diagram in the bL
plane. We simulated several 1D deforming cells with
different values of b (exactly as in Fig. 4, B and C). Fig. 5
A illustrates the trajectories of these in length-space as
gray and black trajectories. Gray indicates that the cell is
apolar at that point in the trajectory, whereas black indicates
polarity. For small b-values (region I), the Rac activity re-
mains sufficiently low that the cell’s length does not change,
and the cell remains nonpolar. For intermediate b-values (re-
gion II), the Rac activity is sufficient to induce length
changes, resulting in Rac polarization. However, there is
sufficient Rac activity to increase the cell length beyond
the Turing regime, and polarization is lost so that the cell re-
laxes. When the length returns to the Turing regime, sponta-
neous polarization reoccurs, and the cell again lengthens,
inducing a polarization-relaxation oscillation (as shown in
Fig. 4 C). Quantification of cell length and level of polarity
(top and bottom panels, respectively, of Fig. 5 B) further
illustrate the link between polarized growth and apolar
relaxation. For larger intermediate values of b (region III),
the cell lengthens, and polarization persists. In this case,
the length increases monotonically before approaching a
constant value, with a persistent polarity. Finally, for large
Biophysical Journal 119, 1617–1629, October 20, 2020 1623



A B FIGURE 5 Analysis of length dependence of dy-

namics. (A) LPA of the fixed domain system (L is

thus a parameter, not a variable) reveals regimes

of nonpolar (unshaded), stimulus-induced polariza-

tion (blue shaded region), and Turing instability

(i.e., polarizable; inside the red shaded region) in

the bL plane. Gray and black points illustrate length

L trajectories from PDE simulations for various

b-values. As the length changes because of Rac ac-

tivity (dependent on mechanical parameters), the

cell can be in a polarized (black) or nonpolar

(gray) state. Once the cell’s length is in the Turing

regime, polarization may occur. Regions I–IV

denote the characteristic behavior for a range of

b-values: I nonpolar, resting cells; II polarization-

relaxation oscillation; III persistent polarization;

and IV nonpolar, expanded cells. (B) Given are

the plots of cell length (top row) and polarity strength (bottom row) for two example simulations of the coupled model in regimes III (b ¼ 4; left column,

labeled * in A) and II (b ¼ 2; right column, labeled ** in A), respectively. Top row: shown is the length as a function of time. Bottom row: shown is the

difference between maximal and minimal Rac activity as a function of time (a proxy for polarization). Color indicates polar (black) or nonpolar (gray)

Rac activity. To see this figure in color, go online.
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b-values (region IV), stimulation is too strong for polarity to
occur. Cells in this region remain nonpolar and expanded.
We do note that receptor saturation or other factors could
limit the maximal level of b because Rac activation is down-
stream of a receptor-mediated signaling cascade. Thus, if
the maximal level of receptor signaling is limited, it is
possible that no level of external stimulation would perpet-
ually overstimulate the cell.
Verification of the mechanosensing-adaptation
hypothesis in a 2D continuum mechanics model

Using the 2D mechanochemical model, we repeated the
simulation depicted by the arrows in Fig. 3 A and shown us-
ing the 1D model in Fig. 4. In Fig. 6, we perform the same
simulation experiment in which an initially at rest, circular
cell is uniformly stimulated with high levels of chemoattrac-
tant. As in the 1D model, if there is no feedback from ten-
sion (d1 ¼ 0; Fig. 6 A), the cell simply expands because
of the uniformly increased Rac activity (dashed line indi-
cates the cell’s initial position). Note that there is slight
movement in the positive x-direction because we apply a
small gradient of the parameter b to each cell to ensure
the cells consistently polarize in the same direction. With
feedback from tension (d1 ¼ 30; Fig. 6 B), the cell initially
expands isotropically to a point, polarizes, and then mi-
grates. In Fig. S5, we illustrate that polarization occurs
because of an increase in area to about A z 1.1 caused by
increased Rac activity. We also observe the polarization-
relaxation oscillation found in the 1D model for lower
basal-activation rate b ¼ 2 (Fig. 6 C); however, in 2D, we
used d1 ¼ 160 instead of d1 ¼ 80 as in the 1D model. For
these parameters, the polarization-relaxation oscillation is
transiently present but not stable. As the cell elongates, po-
larization persists but oscillates in magnitude (see Video
S7). These results confirm that tension-signaling feedback
1624 Biophysical Journal 119, 1617–1629, October 20, 2020
still leads to adaptive polarization when embedded in a
2D geometry.
Mechanosensing adaptation in a chemoattractant
gradient

Thus far, we have demonstrated that tension-mediated
inhibition can facilitate polarization at higher, uniform
stimulation levels than are possible without it. Based on
this, we hypothesize that tension will allow cells to
migrate further up a stimulus gradient because they are
exposed to higher and higher signaling as they migrate
up a gradient.

To test this, we simulated the 1D and 2D mechanochem-
ical models in a chemoattractant gradient encoded in a
spatial gradient of the activation parameter b. We simu-
lated 1D cells with the same parameters as in Fig. 4 for
a range of feedback strengths d1. Each cell is subjected
to a chemoattractant gradient encoded in a spatially vary-
ing basal-activation rate b(x) ¼ b0 þ b2x. 1D simulation
results show that feedback from tension (d1 > 0) enables
cells to migrate further up this gradient (Figs. 7 A and
S5 A). We simulated 2D cells in the same gradient as in
1D with parameters as in Fig. 6. The cell with feedback
from tension (d1 ¼ 30; Figs. 7 B and S5 B) migrates further
as expected based on the 1D results. Together, these results
suggest that feedback from tension does enable further
migration and that the cell’s with stronger feedback from
tension (larger d1) migrate further than cells without feed-
back. In cells with stronger feedback, we observe that
polarized Rac activity persists for longer than in those
with weaker or without feedback (Figs. S5–S7). We do
note that this is not a form of ‘‘perfect’’ adaptation. Even-
tually, all cells with this mechanism saturate their
signaling and halt migration. Thus, although this form of
adaptation is a natural consequence of tension inhibition,
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FIGURE 6 Cell polarization in the 2D mechanochemical model. (A) Uniform stimulation leads to cell expansion without feedback from tension d1 ¼ 0.

The dashed line indicates the cell’s initial position, and color corresponds to Rac activity. Here, d depends on T as before: d(T) ¼ d0 þ d1T; but tension is

defined as the difference between this area and the rest area: T¼A(t)� A0 with d0 ¼ 2 and A0 ¼ 1. We apply a small internal chemoattractant gradient in the

reference domain (i.e., in x-coordinates) to ensure polarization along the x-axis according to b(x) ¼ b0 þ b1x, with b0 ¼ 4 and b1 ¼ 0.1. The mechanical

parameters are fR ¼ 0.3 nN/mm, E ¼ 0.3 kPa, n ¼ 0.45, g ¼ 20 kPa,s/mm2, and b ¼ 10 s. The initial conditions are R(x, t) ¼ 0, Ri(x, 0) ¼ 2, with the me-

chanical system at rest (no displacement). See Video S5. (B) The cell is resting when exposed to chemoattractant at t ¼ 0; it first expands uniformly and

subsequently polarizes and migrates because of increased feedback from tension d1 ¼ 30. Other parameters are as in (A). See Video S6. (C) Shown is

the predicted oscillatory behavior when not oversaturated with b0 ¼ 2.0 and d1 ¼ 160. Other parameters are as in (A). See Video S7. See Fig. S5 for plots

of cell area and polarity over time. To see this figure in color, go online.
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we are not proposing it as a replacement for known forms
of biochemical adaptation.
DISCUSSION

In this study, we coupled a reaction-diffusion model of Rac
dynamics to a minimal model of cell mechanics to illustrate
that the two-way feedback from membrane tension to Rac
activity allows cells such as human neutrophils to adapt to
saturating levels of chemoattractive environment and main-
tain cell polarity. We first used the LPA to map the param-
eter regimes of behavior of the wave-pinning model with
respect to the basal activation (b, which is altered by stimu-
lation) and deactivation rates (d, which is altered by ten-
sion). Given the shape of polarizable region in the bd
plane, we hypothesized that an increase in the basal activa-
tion that pushes the cell into an overactivated state can be
counterbalanced by a commensurate increase in the deacti-
vation rate d arising from increases in cell tension resulting
from protrusion. We then simulated the cell’s response to
stimulation from uniformly high levels and a gradient of
chemoattractant using 1D and 2D deformable cell models
in which signaling influences cell size and tension and
vice versa. Results confirmed that the interaction between
tension and signaling can lead to polarization adaptation
to high signaling levels and that cells with feedback from
Biophysical Journal 119, 1617–1629, October 20, 2020 1625
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FIGURE 7 Mechanosensing adaptation enables persistent migration in a chemoattractant gradient. Cells migrate up a chemoattractant gradient encoded in

the basal-activation rate b(x)¼ b0 þ b2x with b0 ¼ 2.5 and b2 ¼ 1. (A) 1D cells with feedback from tension (d1 > 0) are able to migrate further up the chemo-

attractant gradient than those without feedback from tension (d1 ¼ 0) before becoming overstimulated and losing polarity (see also Figs. S5 A and S6). (B)

Snapshots over time of migrating cells in 2D without (top cell; d1 ¼ 0) and with (bottom cell; d1 ¼ 30) feedback from tension reveal the same behavior as in

1D (see also Fig. S7 B). Shown are parameters as in Fig. 6, A and B except there is no longer an internal gradient applied to the interior of the cell in the

stationary domain (b1 ¼ 0). The dashed circle shows the initial position. See Videos S8 and S9. Color shows Rac activity in all panels. To see this figure in

color, go online.

Zmurchok et al.
tension can migrate further up a chemoattractant gradient
before becoming oversaturated and losing polarity. We
coupled the LPA with these full model simulations to
demonstrate that the adaptive polarity that arises after uni-
form stimulation is the result of the cell passing through a
bifurcation in the GTPase system. Thus, cell area changes
that result from overstimulation force the cell back into a
polarizable state by counterbalancing that stimulation.
These results broadly support the hypothesis that mechano-
sensing can act as an adaptive response to maintain polarity
in migrating cells. Further, they are consistent with the
conclusions of experimental observations connecting cell
mechanics and cell signaling (3–5).

Our study makes several testable predictions. First, our
model predicts a relationship between polarity, tension,
and cell area. Measurements of cell polarity, tension, and
cell area during neutrophil stimulation experiments could
be jointly plotted to test the presence of such a relationship.
Fluorescent probes or downstream readouts can be used to
assess Rac activity levels during neutrophil stimulation
experiments (3,41), whereas the optical trap force measure-
ments can measure tension (76). Second, to test whether ten-
sion plays a role in the adaptive response, the neutrophil
stimulation experiment could be performed on cells with in-
hibited actin-based protrusion. If tension is responsible for
the adaptive response, the hypothesis would be that in the
absence of protrusion, uniform signaling activation would
occur and persist instead of polarization (though it is
possible the formation of blebs (41) or some other unin-
tended effect could complicate matters). Such cells (with
and without feedback from tension) could also be exposed
to chemoattractant gradients as in Fig. 7 to assess whether
1626 Biophysical Journal 119, 1617–1629, October 20, 2020
tension enables persistent migration. Third, at lower levels
of chemoattractant stimulation, the simulated cells oscillate
between a polarized and relaxed state. Although such length
oscillations are observed during stepping motility in amoe-
boid cells (75), to our knowledge, they are not observed in
uniformly stimulated neutrophils.

Numerous studies have used differing computational ap-
proaches to study the consequences of mechanics, geometry,
and tension on cell dynamics, such as explicitly modeling the
competition between separate front and rear cellular com-
partments (77,78), phase-field simulations incorporating
feedback from tension, and other physical parameters
(46,47,49,51,54,55), cellular Potts model simulations
(53,79,80), level-set methods (81–83), immersed-boundary
models (45,84,85), free-boundary models (48,86), or sto-
chastic methods (50,87). Our work differs from these
numerous prior studies in that we study how the interplay
between mechanics and signaling facilitates adaptation. In
this sense, our work is most similar to that of Buttenschön
et al. (64), who considered the wave-pinning model coupled
to a similar 1D mechanical model. Their work did not, how-
ever, incorporate feedback from mechanics to signaling.
Zmurchok et al. (88) investigated the consequences of this
feedback. However, because this study was primarily con-
cerned with collective, multicellular dynamics, each cell
was treated as a well-mixed point entity (i.e., polarity was
not possible), and adaptation was not studied. Kopfer et al.
(89) coupled a model of GTPase kinetics with actin and
myosin dynamics along with a viscous active gel model for
cellular physics (opposite our continuum mechanics model).
Their results, however, primarily focused on demonstrating
the ability of tension to limit protrusion to a single front
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and resolve conflicting stimuli. Thus, although our mechano-
chemical modeling fits into this larger body of literature, the
intent and results, namely to demonstrate the adaptive nature
of tension-mediated mechanochemical feedback, are distinct.

This study does have limitations. We chose to allow cell
mechanics to affect the deactivation rate (d). This is likely
an oversimplification. It is possible that tension could influ-
ence activation in an inverse way, though this would likely
lead to similar qualitative results. We also chose to study the
simplest model for Rac signaling and did not explore more
complicated variants that include multiple GTPases
(26,31,33) or additional feedback networks (80). This was
motivated by both simplicity and the fact that the interaction
between Rac and tension has been well studied experimen-
tally (3–5). We also defined cell tension as a global quantity
despite evidence suggesting that membrane tension is more
localized than previously thought (76) and that cells such as
keratocytes generate tension gradients (90,91). In our study,
however, we are concerned primarily with how cells respond
to uniformly high stimulation that would be expected to,
broadly speaking, lead to global increases in tension due to
protrusion. Lastly, we used the simplest mechanical models
appropriate for cell mechanics (an overdamped elastic spring
in 1D and linear viscoelasticity in 2D) and approximate esti-
mates of biochemical and biophysical parameters. Although
this is sufficient for our purpose, a more detailed model of
cell mechanics and/or precisely measured or estimated bio-
physical parameter values would be required to study 2D
migration itself (as has been done bymanyothers (44–53,55)).

Despite these limitations, this study demonstrates that
mechanosensing can act as an adaptive response to maintain
polarity in environments with high levels of chemoattrac-
tant. We confirm that the feedback for establishment of po-
larity via membrane tension can be described using a wave-
pinning model of Rac signaling. Although we have assumed
that membrane tension is a global quantity that feeds back
into Rac signaling dynamics, we note that the underlying
signaling network is responsible for the adaptive response.
Any signal that acts on Rac dynamics in a similar way could
induce a similar response (calcium influx, for example, as
suggested by Shi et al. (76)). This type of mechano-chemi-
cal adaptation is a potential alternative that may work in par-
allel to biochemical mechanisms of adaptation.
Data availability

The code used to produce the 1D simulations is available as
an archived GitHub repository at https://doi.org/10.6084/
m9.figshare.11916495. The code for the 2D simulations
can be made available upon request.
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1 1D models

1.1 Wave-pinning model for Rac GTPase activity

We use the wave-pinning model [1] to describe Rac GTPase activity. We track the activity of active Rac
(R̃(z, τ)) and inactive Rac (R̃i(z, τ)) in a 1D domain z ∈ [0, L0] with no-flux boundary conditions (∂R∂z =
∂Ri
∂z = 0 for z = 0, L0). The system of reaction-diffusion PDE governing the Rac dynamics are:

∂R̃

∂τ
=

(
b̃+ c̃

R̃n

Rn0 + R̃n

)
R̃i − δR̃+ D̃

∂2R̃

∂z2
, (1.1a)

∂R̃i
∂τ

= −

(
b̃+ c̃

R̃n

Rn0 + R̃n

)
R̃i + δR̃+ D̃i

∂2R̃i
∂z2

. (1.1b)

Here, the activation rates (terms in parenthesis) are comprised of a basal activation rate b̃ and a Hill function
with magnitude c̃, half-maximum R̃0 and exponent n, modeling auto-activation, the deactivation rate is δ,
and D̃ and D̃i are the diffusion coefficients of the active and inactive forms, respectively.

Note that we have assumed that the total amount of Rac is conserved within the cell, since Rac merely
switches between active and inactive forms. Adding Equation (1.1a) to Equation (1.1b), integrating across
the domain [0, L0], and using the boundary conditions gives∫ L0

0
R̃(z, τ) + R̃i(z, τ) dz = L0R̃T , (1.1c)

where R̃T is the mean Rac concentration (L0R̃T is the total amount of Rac). To non-dimensionalize the
wave-pinning model, we introduce:

R =
R̃

R0
, Ri =

R̃i
R0
, t = τ, and x =

z

L0
. (1.2)

∗co-first author
†william.holmes@vanderbilt.edu
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Note that we do not scale time by the deactivation rate δ as we wish to explore the affect of δ on the system
dynamics. With this scaling, the equations become

∂R

∂t
=

(
b+ c

Rn

1 +Rn

)
Ri − δR+D

∂2R

∂x2
, (1.3a)

∂Ri
∂t

= −
(
b+ c

Rn

1 +Rn

)
Ri + δR+Di

∂2Ri
∂x2

. (1.3b)

where the scaled parameters are

b = b̃, c = c̃, , D =
D̃

L2
0

, Di =
D̃i

L2
0

, and RT =
R̃T
R0

. (1.4)

Note also now that the conservation statement is:∫ 1

0
R(x, t) +Ri(x, t) dx = RT . (1.5)

1.2 Local Perturbation Analysis of the wave-pinning model

Local Perturbation Analysis (LPA) [2] is an approximation method that can be used to facilitate the predic-
tion about the behavior of a spatial reaction-diffusion PDE model with fast and slowly diffusing variables
will respond to spatially heterogeneous perturbations from homogeneous steady-states (HSS). See [3] for a
detailed tutorial.

In short, by considering the evolution of an asymptotically small width static-in-time pulse-like pertur-
bation in the slowly diffusing variables (in this case active Rac) through exploiting the fast/slow discrepancy
between the quickly diffusing inactive Rac and the slowly diffusing active Rac, LPA reduces the system
of PDE to a collection of more easily analyzed ODEs. These ODEs describe the evolution of concentra-
tions of near (local variables) and away from (global variables) the perturbation on the intermediate reaction
timescale. On the intermediate reaction timescale, a pulse in the slow variable will not yet be affected by
the slow diffusion, but any changes to the inactive variable will be affected by the fast diffusion. Thus,
away from the perturbation, the system evolves according to the well-mixed kinetics with activity levels at
the homogeneous steady-state. Inside the perturbation the system will evolve due to the reaction kinetics
evaluated at the global inactive Rac level Ri = RT − R and at the perturbation height R`. Applying LPA
to simplify the wave-pinning model yields the following system of ODEs describing the evolution of the
global R and local R` variables:

dR

dt
=

(
b+ c

Rn

1 +Rn

)
(RT −R)− δR, (1.6a)

dR`

dt
=

(
b+ c

(R`)n

1 + (R`)n

)
(RT −R)− δR`. (1.6b)

Note that the global variable Ri has been removed from this system due to mass conservation (here Ri =
RT −R).

We next used the numerical continuation package XPPAUT to perform a bifurcation analysis of the
LPA system (Equation (1.6)), and to produce Figure 2A and Figure 3A. To make this diagram, we first
performed a one-parameter bifurcation analysis of the LPA system with respect to the parameter b as shown
in Supporting Figure 1. In this LPA bifurcation diagram, the monotonic solution branch (black curve)
represents a HSS steady-state while the loop of solutions (grey curve) corresponds to non-trivial states
where the local R` and global R activities differ. The presence of this local solution branch indicates
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Supporting Figure 1: LPA Bifurcation Diagram. Bifurcation analysis of Equation (1.6) reveals three
regimes of behavior: polarizable by stimulus (blue shaded), Turing regime (red shaded), and non-polar
regime (unshaded). The local perturbation R` can attain a steady-state value different from the homoge-
neous steady-state (HSS) in the polarizable by stimulus region provided its amplitude differs from the HSS
sufficiently. In the Turing regime, the HSS is linearly unstable to perturbations while the HSS is the only
linearly stable state in the non-polar regime. Parameters are RT = 2, c = 5, n = 6, and δ = 5.

the potential of some spatial effect since, in these cases, the local perturbation can grow to attain a value
different from the background value, possibly driving pattern formation. Bifurcation analysis of the LPA
system identifies three regimes of behavior. First, for large values of b the only steady-state is the global
steady-state that corresponds to a stable HSS. Second, for small and intermediate values of b we say that
the system is polarizable by a stimulus (blue shaded regions) since the local perturbation can either decay
back to the global HSS or grow to a different amplitude depending on its initial magnitude (blue arrows).
Finally, for intermediate values of b we say that the system is in a Turing regime since in this region the HSS
is linearly unstable and any perturbation will grow to the local branch.

To make the diagram in Figure 2A and Figure 3A in the paper, we first identified the saddle node
bifurcations associated with the local branch that demarcate the polarizable region (at b ≈ 4.1) and the
branch points where the local solution branch bifurcates from the global solution branch (the branch points
that demarcate the Turing regime). Next, we continued the saddle node bifurcations and the branch points in
the bδ-plane to find the curve marking the boundary of the polarizable region (blue curve) and the boundary
of the linearly unstable Turing regime (red curve), respectively.

1.3 1D mechanochemical model

To couple Rac activity and cell mechanics in 1D, we solve the Rac activity PDEs in a time-dependent
domain and allow this domain to change as a result of Rac activity. The model formulation and analysis
is similar to other investigations of pattern-forming reaction-diffusion PDE in 1D such as [4–7]. In this
formulation, we track active (R(x, t)) and inactive (Ri(x, t)) Rac activity on a time-dependent domain
Ω(t) = [x−(t), x+(t)]. We assume that the domain Ω(t) is 1D interval (initially [0, 1] at t = 0) where the
boundary points depend on the displacement by the velocity field a(x, t):

x′−(t) = a(x−(t), t), x′+(0) = 0, (1.7a)

x′+(t) = a(x+(t), t), x′+(0) = 1. (1.7b)

3



We assume that (1) tension affects Rac activity, (2) Rac activity affects the velocity field, and (3) tension is
a global quantity that does not vary in space. Thus, we consider the following reaction-diffusion-advection
model of the wave-pinning system:

∂R

∂t
+

∂

∂x
(aR) = D

∂2R

∂x2
+ f(R,Ri, T ), (1.8a)

∂Ri
∂t

+
∂

∂x
(aRi) = Di

∂2Ri
∂x2

− f(R,Ri, T ). (1.8b)

Here, the reaction function f(R,Ri, T ) is modified from the standard wave-pinning model to include
tension-dependent deactivation of active Rac:

f(R,Ri, T ) =

(
b+ c

Rn

Rn0 +Rn

)
Ri − δ(T )R, (1.9)

where δ(T ) = δ0 + δ1T describes how tension modulates Rac deactivation. Here, tension is defined as the
difference between the length and rest-length of the spring: T = L− `0.

By treating the domain boundary as a moving discontinuity, we can use the Rakine-Hugoniot jump
conditions to determine that no-flux boundary conditions are appropriate (see §1.3.2):

Rx = Rix = 0 at x = x−(t), x+(t). (1.10)

Given these boundary conditions, the total Rac GTPase is conserved within the cell:∫ x+(t)

x−(t)
(R+Ri) dx = RT (1.11)

for all time t. We model the cell as linear elastic spring, and that active Rac is responsible for protrusive
forces on the cell ends. That is, we set

γ
dx−
dt

= k(x+ − x− − `0)− F−(R(x−(t), t)) (1.12a)

γ
dx+

dt
= −k(x+ − x− − `0) + F+(R(x+(t), t)) (1.12b)

where γ is the viscosity, k is the spring constant, `0 = 1 is the rest-length and the functions F± describe the
protrusive forces oriented outward from the cell from R. Note that inertial effects are ignored as appropriate
for modeling cell motion. We use a smoothed Heaviside function for F±(R):

F±(R) =
fR

1 + e−2s1(R−s0)
(1.13)

where s1 and s0 are parameters that control the sharpness and location of the switch and fR > 0 is the
magnitude of the force. Note that the length of the cell is given by the difference of the endpoints so that the
rate of change of length is calculated simply by

L̇ =
dx+

dt
− dx−

dt
. (1.14)

where · denotes the time derivative.
Lastly, to determine the velocity field a(x, t) from the forces imposed at the cell ends, we assume that

the cell grows isotropically. With isotropic growth, we assume that each elemental tissue volume grows or
shrinks by the same factor as the domain changes size. To determine a(x, t), we now change to Lagrangian
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coordinates to track the trajectories of elemental tissue volumes. Let x = Γ(X, t) be the map that gives the
spatial coordinate x for elemental tissue volume X after time t. We specify Γ(X, 0) = X so that the initial
position of each element X is X . Note that the flow a is related to the map Γ:

∂Γ

∂t
= a(X, t). (1.15)

We can re-state the isotropic growth assumption in terms of shrinking or growing each elemental tissue
element equally over time. That is, the position x, of each elemental tissue volume X is given by

x = Γ(X, t) = Xr(t), (1.16)

where r(t) is the factor that shrinks or grows each material coordinate over time. In this case, since our
domain has already been scaled to length 1, r(t) = L(t) is the non-dimensional domain length. The
length L is determined by the mechanical model given above. Using Equation (1.15), Equation (1.16), and
r(t) = L(t), we find that the flow a(x, t) is related to the domain length L(t) by:

a =
∂Γ

∂t
=

∂

∂t
XL = XL̇ = x

L̇

L
. (1.17)

1.3.1 Transforming the 1D mechanochemical model to a stationary domain

To numerically simulate the 1D mechanochemical model, we transform the moving-boundary problem to a
stationary domain. We numerically solve the mechanochemical model on the stationary domain and later
transform the solution back to the moving-domain.

Our problem is of the form of a reaction-advection-diffusion PDE system on the domain Ω(t) =
[x−(t), x+(t)]:

Rt + (aR)x = (DRx)x + f(R,Ri), (1.18a)

Rit + (aRi)x = (DiRix)x − f(R,Ri), (1.18b)

where subscripts denote partial derivatives and boundary conditions are

Rx|x=x−(t),x+(t) = Rix|x=x−(t),x+(t) = 0. (1.19)

We transform the moving boundary problem to a stationary domain [0, 1]. Let x̄ = x−x−(t)
L(t) where L(t) =

x+(t)− x−(t) is the cell’s length. The transformation is given by the map

(x, t) 7→
(
x̄ =

x− x−(t)

L(t)
, t̄ = t

)
(1.20)

so that x̄ ∈ [0, 1]. Note that x = x̄L(t) + x−(t) and t = t̄.
We define new variables on the transformed coordinates to match the values in the old coordinates:

R̄(x̄, t̄) := R(x(x̄, t̄), t(x̄, t̄)), (1.21a)

R̄i(x̄, t̄) := Ri(x(x̄, t̄), t(x̄, t̄)). (1.21b)

Under this transformation (details only shown for R, since everything is similar for Ri), we find that:

R̄x̄ = Rxxx̄ +Rttx̄ = RxL+Rt0 = RxL (1.22a)

R̄t̄ = Rxxt̄ +Rttt̄ = Rx(x̄L̇+ ẋ−) +Rt1 = Rx(x̄L̇+ ẋ−) +Rt. (1.22b)
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Using the fact that a = x L̇L , and the above relationships we find that the PDE for R̄ is:

R̄t̄ −
1

L
R̄x̄(x̄L̇+ ẋ−) +

1

L

[
R̄(x̄L+ x−)

L̇

L

]
x̄

=
D

L2
R̄x̄x̄ + f(R̄, R̄i). (1.23)

We expect the advection term to disappear under this transformation since the domain is now stationary and
a term representing concentration or dilution of Rac to appear since the total mass is conserved. Indeed,
after simplification, we obtain the reaction-diffusion PDE:

R̄t̄ =
D

L(t)2
R̄x̄x̄ + f(R̄, R̄i)− R̄

L̇(t)

L(t)
, (1.24)

where the diffusion coefficient is depends on the current domain size L(t), and Rac is either concentrated

(−R̄ L̇(t)
L(t) > 0 if the domain is shrinking, L̇(t) < 0) or diluted (−R̄ L̇(t)

L(t) < 0 if the domain is expanding,

L̇(t) > 0).
Taken together, we find that the PDE model to simulate on x̄ ∈ [0, 1] is

R̄t̄ =
D

(L(t))2 R̄x̄x̄ + f(R̄, R̄i)− R̄
L̇(t)

L(t)
, (1.25a)

R̄it̄ =
Di

(L(t))2 R̄ix̄x̄ − f(R̄, R̄i)−Ri
L̇(t)

L(t)
, (1.25b)

with R̄x̄ = R̄ix̄ = 0 for x̄ = 0, 1. To determine L = x+(t) − x−(t) and L̇ = ẋ+(t) − ẋ−(t), we
simultaneously solve the system of ODEs for the position of the cell endpoints:

γ
dx−
dt

= k(x+ − x− − `0)− F−(R̄(0, t)), (1.26a)

γ
dx+

dt
= −k(x+ − x− − `0) + F+(R̄(1, t)). (1.26b)

Once the solution is numerically approximated in the stationary domain coordinates (x̄, t̄) we undo the
coordinate transformation, via x = x̄L(t)+x−(t), to plot the solution in the original space-time coordinates
(x, t) as in Figure 4B and C.

1.3.2 Derivation of no-flux boundary conditions

To determine the appropriate boundary conditions for the 1D mechanochemical model, we define variables
to be zero outside the domain Ω(t) and use the Rankine-Hugoniot jump condition to have no-flux across the
cell boundary and treating the domain as a moving discontinuity (as in [8]). We only derive the boundary
condition for R(x, t) at x− since the derivation at x+ and for Ri is similar. Integrating the PDE for R over
the domain x1 < x− < x2, we have

∂

∂t

∫ x2

x1

Rdx =

∫ x2

x1

∂

∂x
(DRx − aR) dx+

∫ x2

x1

f dx. (1.27)

We can split the integral on the left into two parts and evaluate the first integral on the right to find that

∂

∂t

(∫ x−

x1

Rdx−
∫ x−

x2

Rdx

)
= (DRx − aR)|x2x1 +

∫ x2

x1

f dx. (1.28)
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Since R ≡ 0 outside of Ω(t), the integration reduces to

∂

∂t

(
−
∫ x−

x2

Rdx

)
= (DRx − aR)|x=x2

+

∫ x2

x1

f dx. (1.29)

Differentiating with respect to time, we find

−
∫ x−

x2

Rt dx−R|x=x−x
′
−(t) = (DRx − aR)|x=x2

+

∫ x2

x1

f dx. (1.30)

Finally, in the limit as x1 → x−(t)− and x2 → x−(t)+, we find

−R|x=x−x
′
−(t) = (DRx − aR)|x=x−

. (1.31)

Since a(x−(t), t) = x′−(t), we cancel terms from the left and ride side to find that

∂R

∂x
= 0 at x = x−(t). (1.32)

Similar derivations reveal that

∂R

∂x
=
∂Ri
∂x

= 0 at x = x−(t), x+(t). (1.33)

1.4 LPA with length as a parameter

To analyze the effect of cell length and basal activation rate on Rac activity in the cell, we study the wave-
pinning model in domains of different sizes using Local Perturbation Analysis. In this formulation of the
wave-pinning model, we consider the length L as a parameter instead of a variable, and investigate the
regimes of behavior (predicted by LPA) in the PDE system. We used this method to produce the LPA
bifurcation diagram in Figure 5A.

To incorporateL as a parameter into the wave-pinning model, we start with the reaction-diffusion system
describing Rac activity on a fixed domain of length one, i.e., x ∈ [0, 1]. We next considered the PDEs that
would govern Rac dynamics on a domain isotropically stretched to length L, i.e., x ∈ [0, L]. That is, we
considered the transformation from the domain [0, 1]× [0,∞) to [0, L]× [0,∞) given by

(x, t) 7→ (x̄ = Lx, t̄ = t) (1.34)

with new variables R̄ and R̄i defined on this new coordinate system as in §1.3.1. Under this transformation,
the PDEs are

∂R̄

∂t̄
=

(
b+ c

R̄n

1 + R̄n

)
R̄i − δR̄+

D

L2

∂2R̄

∂x̄2
, (1.35a)

∂R̄i
∂t̄

= −
(
b+ c

R̄n

1 + R̄n

)
R̄i + δR̄+

Di

L2

∂2R̄i
∂x̄2

. (1.35b)

In this case, the total amount of Rac, T , in this larger domain is now

T :=

∫ L

0
R̄+ R̄i dx̄ = L

∫ 1

0
R+Ri dx = LRT . (1.36)

Thus, to conserve mass in this larger (or smaller domain), the total amount of Rac must be scaled by the
length of the domain, i.e., mass is conserved when the total amount of Rac in the new domain is set to
T = RT

L .
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Supporting Figure 2: Validation of mass conservation in the 1D mechanochemical model numerical
method. Mass conservation error ‖e‖∞ decreases as the number of spatial grid points N increases. Slope
marker (inset) indicates that ‖e‖∞ = O(N−1). Parameters and initial conditions are as in Figure 4C, except
the final time is t = 500.

We now apply LPA to Equation (1.35) to find the following system of ODEs describing the evolution of
the global R̄ and R̄` local variables with cell length L as a parameter.

dR̄

dt̄
=

(
b+ c

R̄n

1 + R̄n

)(
RT
L
− R̄

)
− δR̄, (1.37a)

dR̄`

dt̄
=

(
b+ c

(R̄`)n

1 + (R̄`)n

)(
RT
L
− R̄

)
− δR̄`. (1.37b)

2 1D numerical methods

We used a method of lines discretization as described in the paper. We validated the numerical methods in
1D by checking for Rac mass conservation over time. We found that the mass conservation error, defined by

‖e‖∞ = max
t

∣∣∣∣∫
Ω
R+Ri dx−RT

∣∣∣∣ , (2.1)

is O(N−1) (see Figure 2).

3 2D Model

3.1 2D wave-pinning model for Rac GTPase activity

We use the same “wave-pinning” model in §1.1 to describe Rac GTPase activity for active Rac (R̃(x̃, ỹ, τ))
and inactive Rac (R̃i(x̃, ỹ, τ)) in a 2D domain Ω̃ = {(x̃, ỹ) ∈ R2 | x̃2 + ỹ2 ≤ r20

π } with no-flux boundary

conditions on ∂Ω̃ = {(x̃, ỹ) ∈ R2 | x̃2 + ỹ2 =
r20
π }. The system of 2D reaction-diffusion PDE governing
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the Rac dynamics are:

∂R̃

∂τ
=

(
b̃+ c̃

R̃n

Rn0 + R̃n

)
R̃i − δR̃+ D̃x̃

∂2R̃

∂x̃2
+ D̃ỹ

∂2R̃

∂ỹ2
, (3.1a)

∂R̃i
∂τ

= −

(
b̃+ c̃

R̃n

Rn0 + R̃n

)
R̃i + δR̃+ D̃i,x̃

∂2R̃i
∂x̃2

+ D̃i,ỹ
∂2R̃i
∂ỹ2

. (3.1b)

Here, the only distinction between the 1D “wave-pinning” model in §4.1 are the diffusion coefficients D̃x̃,
D̃ỹ, D̃i,x̃, D̃i,ỹ of the active and inactive forms in the x̃ and ỹ directions, respectively. Due to isotropy,
diffusion coefficients in the x̃ and ỹ directions are indistinguishable such that D̃x̃ = D̃ỹ = D̃, and D̃i,x̃ =
D̃i,ỹ = D̃i

Similarly to 1D, we have assumed that the total amount of Rac is conserved within the cell. Adding
Equation (3.1a) to Equation (3.1b), integrating over the domain Ω̃, and using the boundary conditions gives∫

Ω̃
R̃(x̃, ỹ, τ) + R̃i(x̃, ỹ, τ) dx̃dỹ = Ã0R̃T , (3.1c)

where R̃T is the mean Rac concentration, Ã0 is the total Area (Ã0R̃T is the total amount of Rac). To
non-dimensionalize the 2D wave-pinning model, we introduce

R =
R̃

R0
, Ri =

R̃i
R0
, t = τ, x =

x̃

r0
, and y =

ỹ

r0
. (3.2)

Similarly to 1D, we do not scale time by the deactivation rate δ as we wish to explore the effect of δ on the
system dynamics. With this scaling, the equations become

∂R

∂t
=

(
b+ c

Rn

1 +Rn

)
Ri − δR+D

∂2R

∂x2
+D

∂2R

∂y2
, (3.3a)

∂Ri
∂t

= −
(
b+ c

Rn

1 +Rn

)
Ri + δR+Di

∂2Ri
∂x2

+Di
∂2Ri
∂y2

. (3.3b)

where the scaled parameters are

b = b̃, c = c̃, D =
D̃

r2
0

, Di =
D̃i

r2
0

, and RT =
R̃T
R0

. (3.4)

Note that the domain changes to Ω = {(x, y) ∈ R2 | x2 + y2 ≤ 1
π} with no-flux boundary conditions on

∂Ω = {(x, y) ∈ R2 | x2 + y2 = 1
π}. This scaling results in unitary area A0 = 1. Now, the conservation

statement is: ∫
Ω
R(x, y, t) +Ri(x, y, t) dxdy = RT . (3.5)

3.2 2D mechanochemical model

To couple Rac activity and cell mechanics in 2D, we track active (R(x, y, t)) and inactive (Ri(x, y, t)) Rac
activity on a time-dependent domain Ω(t) with boundary ∂Ω(t). The displacement of the time-dependent
domain is captured by the velocity field a(x, y, t). The same assumption in the 1D mechanochemical model
are made such that (1) tension affects Rac activity, (2) Rac activity affects the velocity field, and (3) tension
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is a global quantity. Thus, we consider the following 2D reaction-advection-diffusion model of the wave-
pinning system:

∂R

∂t
+∇ · (Ra) = D∇2R+ f(R,Ri), (3.6a)

∂Ri
∂t

+∇ · (Ria) = Di∇2Ri − f(R,Ri). (3.6b)

The same wave-pinning from the 1D model is used to describe the reaction kinetics function f(R,Ri) (see
Equation (1.9)), with the main difference being that the tension is defined as the difference between the area
and the rest-area of the cell: T = A−A0.

We again adopt the Rankine-Hugoniot jump conditions:

(−D∇R+ aR) · n = 0 for (x, y) ∈ ∂Ω(t) (3.7a)

(−Di∇Ri + aRi) · n = 0 for (x, y) ∈ ∂Ω(t), (3.7b)

where n is the unit normal to the boundary giving total Rac GTPase conservation:∫
Ω(t)

R+Ri dxdy = RT . (3.8)

3.2.1 Lagrangian-Eulerian framework

In 2D, domain size changes are no longer assumed to be isotropic and we account for spatially-varying
growth and density changes within the finite element mesh domain. Similar to 1D, the reaction-advection-
diffusion equations are mapped to Lagrangian coordinates to track the trajectories of elemental tissue vol-
umes with the mapping x = Γ(x̄, t). In a growing continuum domain, we capture spatial and temporal
variations of the mapping Γ(x̄, t) through the differential operators:

F =
∂Γ

∂x̄
=
∂x

∂x̄
, (3.9a)

a =
∂Γ

∂t
=
∂x

∂t
. (3.9b)

Where F is the deformation gradient tensor which maps the Euclidean/spatial coordinates x = (x, y)
with domain Ω(x, t) onto the Lagrangian/material coordinates x̄ = (x̄, ȳ) with reference domain Ω0(x̄, t),
while a is the instantaneous flow of the material. Similar to 1D, the 2D moving-boundary problem is
transformed into a stationary domain for computational simulations, then the solution is transformed back
into the moving domain. New variables are defined on the Lagrangian coordinates system and are defined
from the Eulerian coordinate system:

R̄(x̄, t̄) := R(x(x̄, t̄), t(x̄, t̄)), (3.10a)

R̄i(x̄, t̄) := Ri(x(x̄, t̄), t(x̄, t̄)). (3.10b)

Under this transformation, gradients are transformed from the spatial gradients ∇ to the material gradients
∇x̄ through the deformation gradient tensor ∇x̄ = F T∇, while the temporal derivative is transformed
from the Eulerian to the Lagrangian coordinate system using the material flow a and the material derivative,
summarized below:

∇x̄R̄ = F T∇R+Rttx̄ = F T∇R+Rt0 = F T∇R, (3.11a)

R̄t̄ = ∇Rx̄t̄ +Rttt̄ = a·∇R+Rt. (3.11b)
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Note that F = ∇x̄x. Combining these transformations together produces the equation

∂R̄

∂t

∣∣∣∣
x̄

+ R̄∇·a = DJ−1∇x̄ ·
(
JF−1F−T∇x̄R̄

)
+ f(R̄, R̄i). (3.12)

The divergence of velocity ∇·a equivalently described by the Jacobian of the deformation gradient tensor
J = det(F ) through the relation ∇·a = 1

J
∂J
∂t . This term describes Rac either concentrating (−R̄ 1

J
∂J
∂t > 0

if the domain is shrinking, J̇(t) < 0) or diluting (−R̄ 1
J
∂J
∂t < 0 if the domain is expanding, J̇(t) > 0). This

results in
∂R̄

∂t

∣∣∣∣
x̄

= DJ−1∇x̄ ·
(
JF−1F−T∇x̄R̄

)
+ f(R̄, R̄i)− R̄J−1∂J

∂t
. (3.13)

On the stationary domain, the boundary condition is transformed to the stationary domain using continuum
mechanics identities, and is given by(

JF−1DF−T∇x̄R̄
)
·N = 0 for (x, y) ∈ ∂Ω0, (3.14)

where N is the unit normal direction of the membrane in the stationary domain. This formulation is useful
for numerical simulations since the entire moving domain reaction-diffusion equation determined by the
deformation gradient tensor F in addition to the solution of the reaction-diffusion equations on the fixed
domain and the entire deformation gradient tensor F can be determined through solving the linear elasticity
equation. In the limit where the domain is modeled as a 1D spring system, the Jacobian simplifies to the
length of the domain J(t) = L(t) and F−1(t) = 1

J(t) = 1
L(t) , while ∂J

∂t = ∂L(t)
∂t = L̇(t), and the 1D

reaction-diffusion PDE on the fixed domain (Equation (1.24)) is recovered.

3.2.2 Linear viscoelastic mechanics equation

We used conservation of momentum to describe the viscoelastic deformation of the cell and obtain the
mapping from the undeformed coordinates x̄ to the deformed coordinates x. This mapping is described as
the displacement u(x, x̄) = x − x̄ for convenience. For a moving cell on the micron scale, inertial forces
(ü terms) are neglected as the cell deforms in a laminar environment and operates in the Stokes regime.
Furthermore, there is frictional drag force between the cell and its environment captured by the Stokes drag
coefficient γ. From this, we write the continuity equation in a pseudo-steady-state:

∇ · σ + γu̇ = 0, (3.15)

where σ is the Cauchy stress. Rac activity results in protrusion in the normal direction to the boundary of
the moving domain:

σTn = F±(R)n on ∂Ω(t). (3.16)

Here, F±(R)n describes polymerization force from actin due to high levels of Rac GTPase activity described
in Equation (1.13) along the unit normal n direction of the membrane, where n is calculated from the
stationary domain normal vector N using the following transformation: n = F−TN/‖F−TN‖. We use the
Kelvin-Voigt constitutive equation to decompose the Cauchy stress into elastic and viscous elements:

σ = σe + σv. (3.17)

For the elastic stress tensor, we start with the generalized Hooke’s law constitutive equation for linear elas-
ticity using the elastic compliance tensor C and small-scale strain ε:

σe = Cε. (3.18)
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For linear isotropic materials, the elastic compliance tensor C is defined by the Lamé coefficients, λ and µ,
for the dilation and shear moduli respectively:

σe = λtr(ε)I + 2µε. (3.19)

The Lamé coefficients, λ and µ, are material parameters equivalent to the Young’s modulus E and Poisson’s
ratio ν through the relations:

λ =
Eν

(1 + ν)(1− 2ν)
, (3.20a)

µ =
E

2(1 + ν)
. (3.20b)

Furthermore, we assume 2D plane stress conditions: σe31 = σe13 = σe32 = σe23 = σe33 = 0. For the
viscous stress tensor, we start with the generalized linear constitutive equation for viscosity using the viscous
compliance tensorG and small-scale strain rate ε̇:

σv = Gε̇. (3.21)

For linear isotropic materials, the viscous compliance tensorG is defined by the equivalent of Lamé coeffi-
cients for viscosity, βλ and βµ, for the first and second coefficients of viscosity respectively:

σv = βλtr(ε̇)I + 2βµε̇, (3.22)

The condition of 2D plane stress still applies: σv31 = σv13 = σv32 = σv23 = σv33 = 0. We then redefine the first
and second coefficient of viscosity in terms of the Lamé coefficients as βλ = β1λ and βµ = β2µ. Assuming
β1 = β2 = β, the viscous constitutive equation takes a form parallel to the elastic constitutive equation but
for strain rates:

σv = β (λtr(ε̇)I + 2µε̇) . (3.23)

Finally, we relate small-scale strain ε to the displacement u through

ε =
1

2

(
∇u+ (∇u)T

)
. (3.24)

3.2.3 Coupling reaction-diffusion to mechanics

Once the instantaneous displacement u is determined from the linear viscoelastic mechanics equation, the
deformation gradient tensor mapping F = ∂x

∂x̄ is obtained from the relation

F = I +
∂u

∂x̄
, (3.25)

where I is the identity tensor. The deformation gradient tensor F , and quantities derivable from the defor-
mation gradient tensor: the Jacobian J = det(F ), and the Jacobian rate of change ∂J

∂t are all the variables
required to couple the mechanics to the 2D reaction-diffusion equation on the moving domain. The Rac-
dependent force at the boundary is then updated in the mechanics equation through the boundary conditions
to couple the reaction-diffusion equations to the mechanics.
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Supporting Figure 3: Validation of mass conservation in 2D mechanochemical model. Mass con-
servation error ‖e‖∞ decreases as the number of nodes N increases, suggesting that ‖e‖∞ = O(N−1).
Parameters and initial conditions are as in Figure 6B except the final time is t = 200.

3.3 2D numerical methods

We used a finite element method to solve the mechanochemical model as discussed in the paper. Note that a
small gradient is introduced to the chemoattractant parameter b = b0 +b1x̄ in the material coordinate system
to direct the polarization along the x-axis, as polarity can spontaneously occur in any direction depending
on the numerical errors of the realization of a simulation.

In coupling the reaction-diffusion to the mechanics, the following happens in a single time step. First,
the mechanics equation is solved for that time step. From the displacement, the values of the deformation
gradient tensor F |t and the Jacobian J |t are obtained. The Jacobian from the previous time step is stored to
allow the numerical calculation ∂J

∂t ≈
J |t−J |t−1

∆t . These values are then used for the reaction-diffusion time
step.

To validate our 2D numerical method, we checked that the total Rac mass is conserved over time. The
same definition for error ‖e‖∞ is used from the 1D numerical methods (see Equation (2.1) and Supporting
Figure 3).

3.4 2D simulated dynamics

In this section, we show (Supporting Figure 4) how the cell area and cell polarity are related over time for
the simulations shown in Figure 6 of the main paper.

4 Chemoattractant gradient simulations

As described in the paper, we simulated 1D and 2D cells migrating up a gradient of chemoattractant encoded
in a spatially variable basal activation rate b(x) = b0 + b2x. Results show that cells with feedback from
tension can migrate further up the gradient before becoming over-saturated and losing polarity (Supporting
Figure 5). Here, we eschew the simple maxR−minR threshold metric used to assess polarity in Figure 5
in the paper and Supporting Figure 4, and instead look at a more detailed investigation into the Rac activity
across the cell. At each point in time, a simulated cell in 1D and 2D gives a list of Rac values corresponding
to each grid point or node in the spatial discretization. We consider the distribution of these Rac values

13



0 60 120
Time

1.0

1.1

1.2

1.3

A
re
a

δ1=0

δ1=30

δ1=160

Polar
Non-polar

Supporting Figure 4: 2D simulated cell dynamics for different feedback strengths δ1. Curves show the
cell area over time colored by cell polarity (polarized if maxR −minR > 0.1) matching the simulations
in Figure 6. Without feedback (δ1 = 0, b0 = 4) the cell expands to large area without polarizing. With
intermediate feedback (δ1 = 30, b0 = 4) the cell does not expand as much, but does polarize. With strong
feedback (δ1 = 160, b0 = 2) the cell undergoes a polarization-relaxation oscillation until approximately
t = 90 until the cell remains polarized but oscillates in polarity and area.

and quantify the distribution’s interquartile range (IQR; defined as the difference between the 75th and
25th percentile) for each point in time. The motivation for this new metric is that polarized cells (with a
region of high Rac activity and a region of low Rac activity) should have bimodal Rac activity distributions.
Such distributions will have larger IQR than unimodal Rac activity distributions that would correspond to
non-polar cells. Results show that cells with stronger feedback from tension that appear more polarized in
Figure 7 in the paper have larger IQR values than cells without feedback in both 1D and 2D (Supporting
Figure 5A and B, respectively). In Supporting Figures 6 and 7, we show several snapshots of the Rac activity
distribution along with a kernel density estimate (with Gaussian kernel bandwidth = 0.1) corresponding to
the 1D and 2D simulations shown in Figure 7 of the paper. These snapshots illustrate how cells without and
with feedback become initially polarized (with bimodal distributions) when migrating up the gradient before
eventually losing polarity (unimodal distributions). Note that the cells with feedback remain polarized for a
longer amount of time.
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A B

Supporting Figure 5: Position and polarity of simulated 1D and 2D cells in a chemoattractant gradi-
ent. A The position of cell centroids are shown for 11 one-dimensional cells simulated in the chemoattrac-
tant gradient as described in Figure 7 of the paper with δ1 = 0, 10, 20, . . . , 100. The color of each curve
indicates the polarization of the cell as determined by the interquartile range (IQR) of the Rac activity at
that point in time. B The x-coordinate of the cell centroids are plotted over time for the two simulated cells
in Figure 7B. The 2D cell with feedback from tension is able to migrate further and maintains polarity for
longer. Color shows the polarization of the cell (as in A, IQR).
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Supporting Figure 6: Snapshots over time of Rac activity distribution and kernel density estimate for
1D simulated cells in a chemoattractant gradient. The Rac activity distributions are shown as normalized
histograms for cells simulated in the chemoattractant gradient as described in Figure 7 of the paper with
δ1 = 0 (blue), 30 (orange), and 100 (green) for t = 100, 500, 1000, 2500, 5000, and 10000. Kernel density
estimates are overlaid. Cells with feedback from tension (δ1 > 0) have bimodal distributions (therefore have
polarized Rac activity) for longer than the cell without feedback (δ1 = 0). Eventually, all three cells become
overstimulated by high Rac activity and lose polarity (t = 10000).
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Supporting Figure 7: Snapshots over time of Rac activity distribution and kernel density estimate for
2D simulated cells in a chemoattractant gradient. The Rac activity distributions are shown as normalized
histograms for cells simulated in the chemoattractant gradient as described in Figure 7 of the paper with
δ1 = 0 (blue) and 30 (orange) for t = 1, 25, 50, 100, 200, and 300. Kernel density estimates are overlaid.
Both cells initially polarize (bimodal distributions), and eventually lose polarity (unimodal distributions).
The cell with feedback from tension remains polarized for longer. See Movie 9.
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