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Abstract
We study the dynamics of a two-variable mechanochemical model for GTPase signaling 
and cell tension using numerical bifurcation analysis, providing insight to the dynamics 
throughout parameter space. The model exhibits a wide range of local and global bifurca-
tions, including three codimension-two bifurcations occurring along a locus of homoclin-
ics. We use numerical bifurcation analysis and simulation to investigate these bifurcations. 
This analysis provides evidence for two rarely seen bifurcations: a neutral saddle homo-
clinic bifurcation and a non-central saddle-node homoclinic bifurcation. We expand the 
understanding of the dynamics of the mechanochemical model and provide a pedagogi-
cally useful example of a realistic but relatively simple model that exhibits a wide range of 
bifurcations.

Keywords Numerical bifurcation analysis · Mechanochemical model · Global bifurcations

Introduction

Bifurcation analysis is often an important step in understanding the dynamics of ordi-
nary differential equation (ODE) models in mathematical biology throughout a param-
eter space. In the last decades, there has been increased interest in "mechanobiology”—
where the mechanical properties and behaviors of cells are studied alongside traditional 
biochemical approaches. This interest has led to the development of an array of mecha-
nochemical models for cell behavior, where the effects of both mechanics and biochem-
istry are jointly investigated [26]. One recent investigation used a nonlinear system of 
ODEs to explore how cell dynamics emerge from the interplay of GTPase signaling and 
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cell tension [32]. A numerical bifurcation analysis played a key role in this study, as 
it outlined parameter regimes where the cell could exhibit different behaviors (oscilla-
tory vs. contracted vs. expanded). However, this bifurcation analysis was limited to one 
parameter. Here, we expand the analysis to two key model parameters, and study the 
local and global bifurcations that occur in the parameter space.

The single-parameter bifurcation analysis of Zmurchok et al. [32] focused on codi-
mension-one bifurcations. This was sufficient for the purposes of their investigation; 
however, a complete mathematical investigation of the model’s dynamics throughout 
parameter space remains unfinished. Our investigation began when we noted the pos-
sibility of a rare codimension-two bifurcation involving a homoclinic solution and 
saddle-node bifurcation in the model from Zmurchok et  al. [32]. To investigate this, 
we expanded the bifurcation analysis to two parameters and sought to characterize the 
global and local codimension-two bifurcations.

Our investigation, besides providing a more complete mathematical analysis of a 
mechanochemical model, is motivated by two other observations. First, several recent 
studies by Bui et al. [2], Tambyah et al. [29], and Link et al. [20] have adapted the model 
from Zmurchok et al. [32]. Further investigations may benefit from a complete bifurca-
tion analysis of the original model. Second, while there is an abundance of examples 
of mathematically interesting global codimension-two bifurcations taught in advanced 
dynamical systems courses with applications in neuroscience or ecology, few (perhaps 
no) examples are related to contemporary mechanochemical models. Our investigation 
here could be used as such an example in a classroom setting since we will use numeri-
cal bifurcation analysis alongside numerical simulations and phase-plane analysis to 
study codimension-two bifurcations.

We begin our study with a two-parameter numerical bifurcation analysis, revealing 
Hopf and saddle-node local codimension-one bifurcations (see Kuznetsov [17] for an 
overview of bifurcation theory). For certain parameter values, a limit cycle terminates at 
a saddle-node steady state, in a codimension-one bifurcation known as a saddle-node on 
an invariant circle (SNIC). At this bifurcation, there is a solution that is homoclinic to a 
saddle-node steady state (note that Homburg and Sandstede [14] review homoclinic and 
heteroclinic bifurcation theory for autonomous vector fields). We also find several local 
codimension-two bifurcations: a generalized Hopf, cusp bifurcations of periodic solu-
tions, a Bogdanov-Takens (BT) bifurcation. Finally, we find two global codimension-
two bifurcations: a neutral-saddle homoclinic bifurcation, and a non-central saddle-node 
homoclinic (NCH) bifurcation.

We focus our analysis on the BT bifurcation and the two global bifurcations. While 
BT bifurcations are relatively common and often studied in models, we include it in our 
focus since it is the “birthplace” of a homoclinic solution that is a key ingredient to the 
two less common global codimension-two bifurcations.

At a neutral-saddle homoclinic bifurcation, the stability of the homoclinic orbits and 
bifurcating limit cycles change [6, 14, 18, 25]. Moreover, theory predicts that a curve of 
saddle-node bifurcations of periodics has exponentially flat tangency to the bifurcation 
curve of saddle homoclinics [5] at such a bifurcation point.

At the non-central saddle-node homoclinic bifurcation, the solution that is homo-
clinic to the saddle-node steady state leaves the steady state tangent to the central direc-
tion and approaches tangent to the non-central direction [5, 7, 14, 22, 28]. Note that 
the NCH bifurcation has also been named a "saddle-node separatrix loop” bifurcation 
[15, 22, 28], and appears in several models with application to neuroscience such as the 
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Morris-Lecar [24], Chay-Cook [4], Wilson-Cowan [31], and Tsaneva-Atanasova [9, 30] 
models and in ecological models as well [1, 17].

To confirm predictions of our numerical bifurcation analysis we provide representa-
tive phase-plane examples throughout parameter space, and detailed numerical simu-
lations near the NCH point. Numerical continuation of homoclinic solutions requires 
some care when using numerical bifurcation software. Considerable effort has been 
made in developing software and numerical methods to continue homoclinic solutions 
[3, 10] and to identify NCH bifurcations in models such as Morris-Lecar [11, 21] and 
cell-cycle models [12]. Because of this difficulty, we use phase-plane analysis and simu-
lations in conjunction with numerical bifurcation analysis software to support our con-
clusions. Our analysis thus provides evidence for these two bifurcations: a neutral saddle 
homoclinic bifurcation and a non-central saddle-node homoclinic bifurcation. Overall, 
our analysis expands the understanding of the dynamics of the mechanochemical model 
and provides a pedagogically useful example of an analysis of a realistic model exhibit-
ing a wide range of bifurcations.

Methods

We analyze the GTPase-Tension model first introduced by Zmurchok et  al. [32]. This 
model was designed to provide a simple description of the interplay between cell signalling 
and cell mechanics. It was used to generate a variety of cell behaviors, ranging from large, 
relaxed cells, to oscillatory cells that dynamically change length, to small, contracted cells. 
We use numerical bifurcation analysis to classify and analyze a wide variety of local and 
global bifurcations in the two-dimensional ODE model of cell behaviour that couples cell 
mechanics and biochemical signaling.

Our numerical bifurcation approach uses standard numerical continuation methods and 
free software such as XPPAUT (available from https:// sites. pitt. edu/ ~phase/ bard/ bardw are/ 
xpp/ xpp. html).

GTPase‑Tension Model

GTPase signals are responsible for regulating a cell’s shape and size by modulating the 
cytoskeleton [27] which is the mechanical infrastructure of the cell. Zmurchok et al. [32] 
coupled cell mechanics back to GTPase signaling through cell tension.

In their model, the dynamics of a cell’s size, where size is measured by end-to-end 
length L, is determined by a mechanical spring-dashpot (a Kelvin-Voigt element) for the 
cytoskeleton in the overdamped low Reynolds number limit:

The parameter � = 2k∕� is small and is defined as the ratio of the spring constant k to the 
viscosity �.

The Rho-family GTPases are known to be central regulators of signaling networks 
in eukaryotic cells. GTPases exist in active and inactive states, and when activated, Rho 
GTPase signals to downstream effectors that eventually result in myosin-induced cell 

(1)
dL

dt
= −�(L − L

0
)

https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.html
https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.html
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contraction. Thus high (Rho) GTPase activation leads to cytoskeleton contraction and 
hence a shorter cell rest length. In the model, the spring rest length, L0 is defined to be

where G is the GTPase activation level. In the “sharp-switch limit” ( p → ∞ ), GTPase 
activity reduces the cell’s rest length from �0 to �0 − � whenever G > Gh.

The feedback from cell length to GTPase dynamics comes through the spring tension 
which is proportional to ΔL = L − L0(G) . The equation for GTPase concentration is

where the first term is the GTPase activation rate and the second is the inactivation rate. 
The tension-dependent activation term is

On the time-scale of GTPase signaling, a common assumption is that the total amount of 
GTPase is constant, GT [13, 23, 32]. These observations explain the main features of the 
model’s equation for G(t) — inactivated GTPase (GT − G) becomes activated with rate 
coefficient in parenthesis, (b + f (ΔL) +… ) and active GTPase becomes deactivated at a 
rate linear in G. The activation rate coefficient contains the basal activation rate parameter 
b, positive feedback from cell tension and from GTPase signaling to itself (through the hill 
function with amplitude � , half-maximum 1, and exponent n).

In the absence of feedback from tension ( � = 0 ), the GTPase equation can exhibit 
bistability over a range of the basal activation rate b, thus explaining how GTPase sign-
aling can be switched “on” or “off” as parameters or initial conditions change. Bistabil-
ity also permits hysteresis which allows the system to act as a relaxation oscillator when 
the activation rate is slowly varied up and down.

To give a physical sense of the dynamics, consider a situation in which GTPase acti-
vation rises in a resting cell by some external stimulus. Increased GTPase activation 
shortens the cell rest length creating tension in the cell ( ΔL > 0 ). This tension simulta-
neously induces contraction which tends to relieve tension but also stimulates GTPase 
activation which further shortens the rest length driving an increase in tension. This 
conflicting feedback, depending on parameters, can result in a variety of dynamical 
behaviors, including large or small cells or a relaxation oscillation where the GTPase 
oscillates between high and low values and the cell’s length oscillates between small 
and large values, respectively.

Numerical Bifurcation Approach

We focus our investigation on the bifurcation parameters b and � , since these parameters 
broadly control the overall level of GTPase activity and the strength of the feedback from 
cell mechanics. We fix the values of the other parameters to match those used in Zmurchok 
et  al. [32]: � = 1.5 , GT = 2 , �0 = 1 , � = 0.75 , Gh = 0.3 , � = 0.1 , � = 10 , and n = p = 4 . 
For our analysis, we used freeware XPPAUT, MatCont [8] for MATLAB (MATLAB and 

(2)L0 = L0(G) = �0 − �

Gp

G
p

h
+ Gp

.

(3)
dG

dt
=

(

b + f (ΔL) + �

Gn

1 + Gn

)

(GT − G) − G,

(4)f (ΔL) =
�

1 + exp[−�ΔL]
.
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Statistics Toolbox Release 2020b, The MathWorks, Inc., Natick, Massachusetts, United 
States), and Python. Code is available at https:// www. github. com/ zmurc hok/ GTPase- tensi 
on- bifur cation.

Results

Bifurcation Analysis

We used numerical bifurcation analysis to extend the one-parameter bifurcation diagram 
in Zmurchok et  al. [32] to the b�-plane. Our analysis recapitulates the basic features of 
the model. Namely, that there is a large region of bistability (Figure  1A) between two 
codimension-one local saddle-node (SN) bifurcations that run roughly parallel through the 
b�-plane, and there is a codimension-one local Hopf (H) bifurcation that results in limit 
cycles (periodic solutions). In the parameter region between the two SNs, there are two 
stable solutions to the left/above the Hopf curve (H): (1) a high G, low L steady-state, 
and (2) a low G, and high L steady-state, that correspond to a contracted cell with large 
GTPase activity, and a relaxed cell with little GTPase activity, respectively. Below/right 
of the Hopf curve, the low-G-high-L steady state is unstable, having lost stability at the 
Hopf. For parameter values between the two SN there is in addition a third steady state, 
an unstable saddle, with intermediate G and L values. In the bottom-left of Figure  1A, 
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Fig. 1  A Two-parameter bifurcation diagram in � and b. Two loci of saddle-node bifurcations (SN, dark red 
and orange) run roughly parallel to each other throughout the diagram. A locus of saddle homoclinic bifur-
cations (HOMC, gold) extends between a pair of codimension-two bifurcations, from a Bogdanov-Takens 
bifurcation (BT) on the right/upper SN to a non-central saddle-node homoclinic bifurcation (NCH) on the 
left/lower SN. A locus of Hopf bifurcations (H, dark green) winds its way from the BT across the diagram 
going through a codimension-two generalized Hopf bifurcation (GH) on the way. Roman numerals label 
regions that are enclosed by bifurcation curves. B A close-up of the region around the NCH (shown in 
(A) as the grey box). The SN and HOMC collide at the NCH. Above/left of the NCH, the SN is a simple 
saddle-node bifurcation (dark red). Below/right of the NCH, the SN is a saddle-node on an invariant cir-
cle bifurcation (SNIC, orange). Near this, a locus of saddle-node bifurcations of periodic solutions (SNP, 
green) extends from the GH, through two codimension-two cusp bifurcations (CPC), and finally terminat-
ing on the locus of hyperbolic saddle homoclinics (HOMC) at the point where the hyperbolic saddle is 
neutral, a codimension-two neutral-saddle homoclinic bifurcation (NSH). The segment of the green SNP 
curve near its terminal point Y is extremely close to the gold HOMC curve and is obscured by it if plotted 
to scale — the inset sketch (modified by hand to separate green and gold curves for clarity) in Figure 1B 
shows this detail

https://www.github.com/zmurchok/GTPase-tension-bifurcation
https://www.github.com/zmurchok/GTPase-tension-bifurcation
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the low-G-high-L steady state is the only one present and can be either stable or unstable 
depending on parameters (stable to the left of the Hopf curve, unstable to its right), and in 
the top-right, the high-G-low-L steady-state is the only one and it is stable. The presence 
of the bistability and limit cycles can be seen in Figure 2A, where a one-parameter bifurca-
tion diagram in � is plotted for b = 0.12 (corresponding to the dashed line at the bottom of 
Figure 1A). This basic structure of two saddle-node bifurcations and a Hopf bifurcation 
can be seen throughout most of the b�-plane with the Hopf bifurcation disappearing above 
the BT bifurcation in Fig. 1) and appears in all panels of Figure 2. The location and types 
of bifurcations related to the limit cycles vary with the parameters.

The stability and subsequent bifurcations of the limit cycles emanating from the Hopf 
bifurcation point vary with the basal activation rate b. For small b, the Hopf bifurcation 
is supercritical and produces a stable limit cycle for various � values (Figure 2A). As � 
increases, this limit cycle terminates on the saddle-node at the lower � value, in a codi-
mension-one bifurcation known as a saddle-node on invariant circle, or SNIC (Figure 1, 
orange curve), where the saddle-node bifurcation occurs with a homoclinic solution. The 
SNIC bifurcation is also called a central (generic) saddle-node homoclinic bifurcation. The 
Hopf bifurcation changes criticality at b ≈ 0.1445 , where there is a codimension-two gen-
eralized Hopf (GH) bifurcation. For b above this value, the Hopf bifurcation is subcritical 
and produces an unstable limit cycle near the Hopf bifurcation (Figure  2B and C). For 
larger b, the subcritical Hopf bifurcation occurs very close to the SN at the larger � and the 
unstable limit cycle terminates in a codimension-one (non-neutral, generic) saddle homo-
clinic bifurcation (Figure 2C). Finally, for b ≈ 0.2039 , the Hopf bifurcation disappears at a 
codimension-two Bogdanov-Takens (BT) bifurcation (Figure 1A). Vertical dashed lines in 
Figure 2 illustrate where different bifurcations occur, and correspond to the boundaries of 
regions that are defined by Roman numerals in Figure 3. Later, we will examine the phase 
plane of the system with parameters in each of these regions to better understand the local 
and global bifurcations throughout parameter space.

We find that the GTPase-tension model exhibits several codimension-two bifurcations: 
a local generalized Hopf (GH) bifurcation, local cusp bifurcations of periodic solutions, a 
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Fig. 2  One-parameter branching diagrams in � and G, corresponding to the horizontal dotted lines in Fig 
1A (A: b = 0.12 ; B: b = 0.145 ; C: b = 0.17 ). Stability is indicated by line thickness (thick: stable; thin: 
unstable) with periodic solutions (maximum and minimum G values) in green and steady states (G values) 
in red. Vertical dashed lines on each panel denote where bifurcations occur, corresponding to the bounda-
ries of regions defined by Roman numerals in Figure 3 (note that some regions are not labelled). Panel A 
illustrates how a branch of stable periodic solutions arises at a supercritical Hopf bifurcation and terminates 
in a SNIC (at the boundary between regions xii and x). Panel B illustrates some of the intricate detail near 
the GH point: a subcritical Hopf bifurcation gives rise to a branch of unstable periodic solutions that goes 
through two saddle-node bifurcations of periodic solutions (giving multiple periodic solutions in regions 
iii and viii), and eventually terminates in a saddle homoclinic bifurcation. Panel C illustrates the behavior 
of the system closer to the BT point where an unstable periodic solution is born through a subcritical Hopf 
bifurcation and terminates in a saddle homoclinic bifurcation
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local Bogdanov-Takens (BT) bifurcation, a global neutral saddle homoclinic bifurcation, 
and a global non-central saddle-node homoclinic bifurcation (NCH). At the GH bifurcation 
(Figure 1B), the criticality of the Hopf bifurcation flips from supercritical to subcritical, 
and a locus of SNP bifurcations extends from this point. The SNP curve (green in Figure 1) 
encounters two cusp bifurcations (CPC points in Figure 1B) before terminating at a point 
(labelled NSH in Figure 1) on the locus of hyperbolic saddle homoclinics (HOMC, gold in 
Figure 1).

Codimension‑Two Bifurcations with Homoclinic Solutions

Arguably the most interesting feature of the bifurcation diagram is the presence of a non-
central saddle-node homoclinic bifurcation (labelled NCH in Figure  1) at the junction 
between the lower SN and the locus of homoclinics. This codimension-two global bifur-
cation is a foil to the BT bifurcation, with the HOMC arising at the BT on one SN, and 
ending at the NCH on the other SN. In fact, homoclinic solutions do not actually disappear 
at the NCH, but rather change, from homoclinics to hyperbolic saddle steady states, into 
homoclinics to non-hyperbolic saddle-node steady states (SNIC). We made an animation 
illustrating how the homoclinic solutions change as parameters are varied in the b�-plane 
along the gold HOMC curve, through the NCH, and then along the orange SNIC curve 
(Supplemental Video 1). Given the centrality of the homoclinic bifurcations to the bifurca-
tion structure of the system, we focus on the three codimension-two bifurcations involving 
the homoclinic solutions.

Bogdanov‑Takens Bifurcation

The Bogdanov-Takens (BT) bifurcation [17] is a relatively common codimension-two 
bifurcation at which a locus of limit cycles disappears through the collision of Hopf and 
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Fig. 3  Annotated two-parameter bifurcation diagram in � and b with regions marked by Roman numerals. 
Shading indicates the number of periodic solutions in each regions: white - no periodic solutions; light, 
intermediate, and dark green - one, two, and three periodic solutions, respectively. Codimension-two bifur-
cation points are marked by capitalized letters: GH - generalized Hopf bifurcation; CPC - cusp bifurcations 
(of periodics); NSH - neutral saddle homoclinic; NCH - non-central saddle-node homoclinic. Inset sketch: 
cartoon of bifurcation curves and regions vii, viii, and ix. Region ix is actually extremely narrow but we 
manually moved the NCH point for clarity; the green and gold curves would actually overlap at the scale 
shown, consistent with the expected exponential tangency
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homoclinic bifucations. In the present model, the BT bifurcation occurs on the the upper 
SN curve for small � and large b as in Figure 1A. At the BT point, both eigenvalues of the 
linearization at the steady-state are zero — the BT bifurcation is also known as a (generic) 
double-zero bifurcation. In Figure 4A, we present a cartoon of the BT including the bifur-
cation curves and sketches of the phase-plane behavior along each bifurcation curve and 
in the regions between curves. Each bifurcation curve is colored as in Figure 1 and each 

Fig. 4  Cartoon of bifurca-
tions and phase-plane behavior 
involving homoclinic orbits in 
the GTPase-tension system. A 
Unfolding of the Bogdanov-
Takens bifurcation. B Unfolding 
of the neutral saddle homoclinic 
bifurcation, C Unfolding of 
the non-central saddle-node 
homoclinic bifurcation. Each 
panel illustrates the codimension-
two bifurcation point of interest 
(points labelled BT, NSH, and 
NCH) and the corresponding 
bifurcation curves. Surround-
ing each cartoon are sketches of 
the phase-plane behavior of the 
GTPase-tension model. Each 
phase-plane sketch is labelled 
and corresponds to a region near 
the codimension-two bifurca-
tion or to a codimension-one 
bifurcation curve emerging from 
it. Grey curves and small arrows 
illustrate trajectories and the flow 
direction while steady states are 
indicated by small dots (stable: 
filled dot; unstable: unfilled 
dot; semi-stable: half-filled 
dot). Stable limit cycles and 
homoclinics are shown as solid 
lines while unstable limit cycles 
and homoclinics are shown with 
dashed lines. The phase-plane 
along the non-bifurcation curve 
HET (dotted gold) in panel 
C corresponds to the cartoon 
labelled viii, where the large loop 
heteroclinic connection from the 
saddle approaches tangent to the 
fast direction of the stable node. 
Alternative arrangements (for 
parameter values in region viii on 
either side of the curve HET) of 
the heteroclinic connection are 
illustrated in the same phase-
plane cartoon via dotted lines 
(see Figure 5 for details)
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phase plane illustrates solutions (grey curves with arrows showing the flow direction) as 
well as steady states and their stability (stable, solid dot; unstable, empty dot; semi-stable, 
half-filled dot). Note that the homoclinic and Hopf curves collide at the BT point with limit 
cycles existing for parameter values in the region between these two curves. In the GTPase-
tension model, the homoclinic solutions are unstable for parameters near the BT, with solu-
tions that start at t = 0 in the interior of the homoclinic loop close to the homoclinic evolv-
ing away from the homoclinic and approaching as t → ∞ the stable node or spiral (large G, 
low L) that exists inside the homoclinic loop. Similarly, the Hopf bifurcation is subcritical 
near the BT and it gives rise to unstable limit cycles as parameters are varied between 
region 2 and 3 in Figure 4A.

Neutral Saddle Homoclinic Bifurcation

As the parameter b is decreased from the BT value along the locus of saddle homoclinic 
bifurcations (HOMC, gold curve in Figure 1 and Figure 3), the eigenvalues, �1 , �2 , of the 
linearization at the saddle steady-state satisfy 𝜆1 + 𝜆2 > 0 . This implies that the homoclinic 
solutions to the saddle, and the bifurcating limit cycles for nearby parameter values, are 
unstable. Moreover, the unstable limit cycles bifurcate to the right of the HOMC curve, 
i.e., as the parameter � increases from a critical value on the HOMC curve.

The expression �1 + �2 is equal to the trace of the linearization matrix, or the diver-
gence of the vector field, at the hyperbolic saddle steady-state. As b decreases from the 
BT value along HOMC, eventually the value of the trace decreases to zero, at the point 
labelled NSH, where b ≈ 0.1419 . Here the hyperbolic saddle is neutral, with �1 = −�2 . 
As b decreases further, below the value at NSH, the trace at the saddle is negative and the 
homoclinic solutions to the saddle and the corresponding bifurcating limit cycles are sta-
ble. The stable limit cycles bifurcate to the left of HOMC, as illustrated in Figure 4B.

The point NSH corresponds to a codimension-two neutral saddle homoclinic bifurca-
tion [6, 14, 18, 25], where the trace of the linearization at the saddle changes sign, and 
hence the stability of the homoclinic orbits and bifurcating limit cycles change. The locus 
of saddle-node bifurcations of periodic solutions (SNP, green curve in Figure 1) extends 
from the generalized Hopf point (labelled GH), through two cusp bifurcations of periodics 
(labelled CPC), and terminates on HOMC at NSH, accounting for the change in stability 
and direction of the limit cycles that bifurcate from the homoclinic solution for parameters 
near the bifurcation point NSH.

At a neutral saddle homoclinic bifurcation point, the SNP curve has an exponentially 
flat tangency with the HOMC curve [6]. For b slightly less than the value at NSH, the SNP 
curve is to the left of the HOMC curve, but extremely close, due to the exponential flatness 
at the intersection point NSH. This makes region ix, between SNP and HOMC, very nar-
row. For example, if b = 0.1410 , then the � values corresponding to region ix are confined 
to a tiny interval, between approximately 0.16502938 and 0.16502941, and the stable limit 
cycle that bifurcates from the homoclinic solution is extremely close to an unstable limit 
cycle that is just inside the stable one (Figure 6).

Non‑Central Saddle‑Node Homoclinic Bifurcation

As the parameter b is decreased along the HOMC curve below the value at the point NSH, 
the trace of the linearization at the saddle remains negative. Eventually as b is decreased 
further to b ≈ 0.14084 , the positive eigenvalue at the saddle shrinks to zero. At this point 
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in the parameter plane, labelled NCH in Figure 1B and Figure 3, the steady-state associated 
with the homoclinic solution is a non-hyperbolic saddle-node, whose linearization has a 
zero eigenvalue and a negative eigenvalue. The solution that is homoclinic to the saddle-
node steady-state leaves tangent to the central direction (associated with the zero eigen-
value), and approaches tangent to the non-central direction (associated with the non-zero, 
negative, eigenvalue) which is transverse to the central direction. A phase-plane for param-
eter values at the NCH is illustrated in Figure  4C. Amongst all saddle-node homoclinic 
orbits, the orbit for parameter values at NCH is a non-generic case, and it corresponds to a 
codimension-two non-central saddle-node homoclinic bifurcation [5, 7, 14, 22, 28].

At the NCH bifurcation point, the HOMC curve terminates on one of the SN curves, a 
locus of parameter values where the model has a saddle-node steady state. To the left of the 
NCH point (decreasing � ), the locus of saddle-nodes (dark red) corresponds to a codimen-
sion-one local saddle-node bifurcation. To the right of the NCH, the locus of saddle-nodes 
(orange) corresponds to a codimension-one global saddle-node on invariant circle (SNIC) 
bifurcation. For parameter values on the SNIC curve, there is a homoclinic orbit that both 
leaves and approaches the saddle-node steady-state tangent to the central direction, and 
therefore the homoclinic solution together with the saddle-node steady-state form a smooth 
invariant circle. The SNIC is the generic case for a saddle-node homoclinic solution and is 
illustrated in Figure 4C.

It is possible to predict the presence of an NCH bifurcation on the basis of nullcline pat-
terns [15, 16] in two-dimensional systems, which are similar in several models, including 
the GTPase-tension model, but we are aware of only a few cases where an NCH bifurca-
tion is identified numerically [3, 10–12]. We used XPPAUT and MatCont to numerically 
identify the NCH in the GTPase-tension model; however, numerical errors associated with 
computing homoclinics in both bifurcation software packages seemed too large to visually 
confirm the quadratic tangency of the HOMC and SN-SNIC curves predicted by Schecter 
[28].

There is an additional (“non-bifurcation”) curve of parameter values associated with the 
NCH bifurcation. We label this curve HET in Figure 4C since it characterizes special, non-
generic heteroclinic connections from the saddle to the nearby node for parameter values 
in region viii. For parameter values along the HET curve, the left branch of the unstable 
manifold of the saddle forms large loop around the phase plane and as t → ∞ makes a 
heteroclinic connection to the strong stable manifold of the node (tangent to the fast direc-
tion, associated with the more negative of the two negative eigenvalues of the linearization 
at the node). In all of region viii, the right branch of the unstable manifold of the saddle 
also makes a heteroclinic connection with the node, in this case to the weak manifold. This 
connection is generic and does not change with small changes in parameter values in any 
interesting way.

The HET curve is not a bifurcation boundary and does not affect the topological equiva-
lence of the phase portraits for parameter values in region viii, yet the large loop hetero-
clinic connection falls on different “sides” of the strong stable manifold of the node when 
parameters are chosen on either side of this HET curve. To further confirm that our point 
NCH is indeed an NCH bifurcation we sought numerical evidence for this HET curve. We 
fixed b and chose values of � near the NCH. For each parameter value, we numerically 
found the saddle and node steady states and the eigenvalues and eigenvectors of the lin-
earizations at both steady states, and we numerically integrated the GTPase-tension model 
with initial conditions on the left branch of the unstable direction of the saddle. We plot 
a portion of the phase-plane near the saddle and node steady states in Figure 5. For (b, �) 
in region ix, we observe that the solution approaches a stable limit cycle (panel A). As � 
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increases, the parameter values (b, �) cross the HOMC curve into distict viii, and we see 
the solution forms a heteroclinic connection to the node (panels B and C). We observe that 
as � increases, this heteroclinic connection switches from the “left” to the “right” side of 
the fast direction (tangent to the strong stable manifold) for the node (compare panel B and 
panel C). Assuming continuity with respect to parameters and accuracy of the simulations, 
this switching implies that there are values of (b, �) for which the heteroclinic connection 
approaches exactly tangent to the fast direction of the node. We remark that the HET curve 
appears to fall very close to the HOMC curve and that it may be possible to approximate 
the HET curve using a bisection method (e.g., for each b, approximate the � value where 
the heteroclinic solution switches sides as in panels B and C).

Phase‑Plane Analysis

To further explain the dynamics and bifurcations observed in the b�-plane, we plotted 
phase portraits for a wide range of parameter values using both numerical simulation and 
computed periodic or homoclinic solutions from continuation.

Dynamics in Each Region

We focus on several of the regions labelled in Figure 3 that border the homoclinic curve, 
and plot phase portraits in Figure 6. Each phase portrait illustrates the steady states and 
periodic solutions alongside their stability as well as the stable and unstable manifolds 
corresponding to steady states classified as saddles. The coloring scheme matches that of 
the other figures — stable steady states and limit cycles are shown with bold lines in red 
and green respectively; unstable steady states and limit cycles are shown with thin lines in 
red and green respectively. We illustrate saddles with a diamond symbol and plot selected 
parts of the stable manifold in black and unstable manifold in grey. For example, the first 

A B C

Fig. 5  Numerically calculated phase portraits near the NCH as in Figure 4C in region viii. A single trajec-
tory (grey curve) starting on the unstable direction of the saddle equilibrium (unfilled dot) loops around the 
phase plane before turning to a limit cycle (panel A) or becoming a heteroclinic connection to the stable 
node (black dot) in panels B and C. Stable and unstable directions (Dir; i.e., eigenvectors) are shown for 
the saddle, and fast and slow directions are shown for the stable node. Inset cartoon illustrates how the 
parameter values change in each panel and their relation to the homoclinic curve (solid gold curve), the SN 
(dark red) and SNIC (orange) curves: b = 0.14088 throughout, and � = 0.1650804 , 0.1650806, 0.1650810 
in panels A, B, and C, respectively. Note that the heteroclinic connection changes position relative to the 
fast direction of the node as the parameter � increases. The change in position is consistent with the bifurca-
tion diagram of the NCH illustrated in Figure 4 and suggests the existence of a large loop heteroclinic con-
nection from the saddle that approaches the node tangent to the fast direction for a value of b intermediate 
to the latter two values above
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panel of Figure 6 (labelled iii) shows the phase-plane for selected parameters in region iii 
(Figure 3). For these parameter values, we expect there to be three steady states (since we 
are in the bistable parameter regime between the SNs) as well as two periodic solutions 
(one stable and one unstable since the Hopf bifurcation is subcritical for these parameters). 
Indeed, we observe two stable steady states separated by a saddle, with the stable manifold 
of the saddle acting as a separatrix. Solutions above the stable manifold tend to the high G, 
low L steady-state, while other trajectories approach the stable limit cycle. Solutions with 

iii v vi

vii viii x

vii ix viii

xi xii x

PNSCMOH

HOPF

SN & SNP

CINSPNS

HOPF

HOMC

PNSPNS&NS

HOMCSNP

PNSCMOH

HOPF

SNP

Fig. 6  Selected L versus G phase-planes illustrating the dynamics in various regions (identified by Roman 
numerals) roughly corresponding to moving downwards along the locus homoclinic bifurcations towards 
the NCH in Figure 3. Periodic solutions are shown in green along with stability (thick, dark: stable; thin, 
light: unstable), stable steady states are marked with thick dark red circles and unstable steady states with 
thin light red circles, saddles are denoted with a black diamond, and the black and grey trajectories indicate 
the stable and unstable manifolds, respectively, of the saddle. Note that the stable and unstable periodic 
solutions are very close in region ix and are thus indicated with arrows. Annotated arrows between dia-
grams indicate the bifurcation(s) that occur as � and b parameters are varied to move between regions
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initial conditions within the smaller unstable periodic solutions tend to the high L, low G 
steady-state.

We designed the layout of Figure 6 to help the reader understand the bifurcations that 
occur along the locus of saddle node homoclinics (HOMC; gold curve in Figure 3 starting 
from the BT point down towards the NCH. Overall, the rows and columns of Figure 3 cor-
respond to moving horizontally or vertically, respectively, through the regions in Figure 3. 
For example, the first row of panels corresponds to a roughly horizontal slice through the 
b�-plane moving through regions iii, v, and vi. Labelled arrows in Figure 6 explain the var-
ious bifurcations that occur as parameters are varied through regions and help the reader 
decipher the meaning of the various bifurcations. For example, moving vertically in the 
diagram in Figure 3 from region iii to vii requires a Hopf bifurcation. This Hopf bifurcation 
can easily be seen from the phase-planes as the small amplitude unstable periodic solution 
disappears when parameters are varied from region iii to vii. Note that the SNP occurs very 
close to the saddle node homoclinic bifurcation as parameters vary from regions vii–ix–vii 
as illustrated in the inset sketch in Figure 1B. The behavior in this relatively small portion 
of parameter space can be observed in the phase planes shown in the third row of Figure 6. 
In region vii, there is only one stable periodic solution. As � increases to parameter values 
in region ix, a saddle node of periodics bifurcation occurs. Thus, in region ix, there are 
three periodic solutions, with the largest amplitude solutions (one stable and one unstable) 
nearly superimposed as indicated by the light green and dark green arrows in the panel of 
Figure 6 corresponding to region ix (see also Section 3.2). Finally, as � increases further, 
the large amplitude stable periodic solution forms a saddle node homoclinic and the phase 
plane thus appears as shown in region vii, where there are two periodic solutions (one sta-
ble and one unstable).

Discussion

In this study, we completed a two-parameter bifurcation analysis of the mechanochemical 
model developed by Zmurchok et  al. [32]. We found a wide variety of local and global 
bifurcations depending on the two key parameters in the system: b and � . Biologically, 
these two parameters characterize the overall activity of GTPase signaling within the cell 
(due to the basal activation rate b), as well as the strength of mechanics-based feedback ( � ) 
from the cell’s length to the GTPase signaling. Our bifurcation analysis here extends the 
initial analysis that only focused on � [32] to a wider region in parameter space. Besides 
the extension of the analysis into a wider parameter space that should interest those study-
ing the dynamics of this mechanochemical model or its variants in the context of single and 
collective cell behavior such as the work by Bui et al. [2],Link et al. [20],Tambyah et al. 
[29], there are two other purposes to our investigation. First, we sought a comprehensive 
numerical continuation, phase-plane analysis, and overview of the relevant theory for the 
global codimension two bifurcations that occur in these models (Bogdanov-Takens, neu-
tral saddle homoclinic, and non-central saddle-node homoclinic bifurcations). This inves-
tigation adds to the list of dynamically interesting models exhibiting such a non-central 
saddle-node homoclinic bifurcation [3, 4, 10–12, 15, 17, 19, 21, 28, 31], yet is the first, to 
our knowledge, documented example in a biophysically realistic mechanochemical model. 
Second, we expect these results to be of interest to those teaching advanced courses on 
nonlinear dynamical systems as a contemporary and biologically realistic example.
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The initial investigation of the mechanochemical model studied here was restricted to 
a bifurcation analysis in the parameter � [32]. There, the authors sought to explain cell 
behavior as a function of this parameter that encodes the strength of feedback from cell 
mechanics on to regulatory cell signaling. Our investigation started when we noticed the 
possibility of a codimension two bifurcation involving a homoclinic solution and saddle-
node bifurcation in that model, and thus sought to provide numerical evidence for this 
NCH point in a two parameter bifurcation analysis.

As a first step, we used the numerical continuation software MatCont in order to per-
form a two parameter bifurcation analysis. We found that the mechanochemical model had 
a standard array of codimension-one local bifurcations including saddle-node, Hopf, and 
saddle-node of periodic bifurcations as well as commonly found local codimension-two 
bifurcations such as a generalized Hopf, cusps of saddle-nodes of periodics, and a Bogda-
nov-Takens bifurcation. We also found several mathematically interesting global codimen-
sion-two bifurcations involving a locus of saddle-node homoclinic bifurcations, including 
a non-central saddle-node homoclinic bifurcation (NCH in Figure  1) and a neutral sad-
dle homoclinic bifurcation (NSH in Figure  1). We confirmed our numerical bifurcation 
results using the XPPAUT package, which incorporates the AUTO numerical continuation 
software. We found XPPAUT easier to use than MatCont, but less powerful. With both 
packages, we found continuing homoclinic orbits near global bifurcations to be less than 
straightforward and it is helpful to know beforehand what you are looking for.

We next focused our analysis on the theory and numerical computation of these global 
codimension-two bifurcations. Our results agree with the theoretical characterization 
of these bifurcation points, as we compared the theoretical predictions (Figure  4) with 
detailed numerical investigations and comprehensive phase-plane analysis in each region. 
The purpose of this analysis was two-fold. First, we used the phase-plane analysis (Fig-
ure  6) to confirm the theoretical characterization of the BT, neutral saddle homoclinic 
bifurcation, and the NCH (Figure 4). Second, we provide the phase-plane analysis to char-
acterize the cell dynamics in terms of cell size, L, and cell GTPase signaling, G in each 
region. This analysis reveals how slight changes in parameter space, especially in areas 
of the parameter space where the bifurcation curves are fairly close together, can lead to 
different cell dynamics (e.g., losing or gaining periodic solutions). Although many of the 
parameter regions with interesting dynamical behavior are extremely small, this analysis 
reveals insight to the expected cell dynamics predicted by this model (large relaxed cells, 
small contracted cells, or cells that periodically change size). The small regions in param-
eter space on cell dynamics are unlikely to be observed in real cells, owing to the inherent 
randomness that would result in fluctuations in size and GTPase activity. Nonetheless, our 
two-parameter analysis identifies other possible mechanisms for the generation of dynami-
cal cellular behaviors. In the original analysis, Zmurchok et al. [32] determined that a cell 
could transition from a relaxed to oscillatory to contracted state by increasing the feedback 
strength from tension to GTPase activation through increasing the parameter � . Here, our 
two-parameter analysis suggests other pathways to generate transitions between the same 
behaviors. If a cell’s ability to respond to mechanical tension is fixed by signalling path-
ways (i.e., fixed � ), then a cell could still generate these behaviors by modulating GTPase 
translation (increasing or decreasing the parameter b).

We limited our investigation to the b�-plane, although could expand to other bifurca-
tion parameters of interest. For example, Holmes and Edelstein-Keshet [13] explored 
the dynamics of similar GTPase signaling models (without feedback from cell mechan-
ics) to that studied here but also examined the role of other parameters such as the total 
GTPase amount GT , or the strength of positive feedback, � , on the dynamics. We briefly 
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investigated the effect of increasing � on the bifurcation structure. To avoid the com-
plexity of three simultaneously varying parameters, we fixed b. We found that the region 
of bistability that encloses the dynamically interesting global bifurcations exists for a 
wide range of � for small � . However, as � increased, the region of bistability only exists 
for a smaller range of � before the saddle-nodes collide in a cusp bifurcation. Given 
this observation, we expect the many dynamically interesting bifurcations involving the 
saddle-node homoclinic solution to persist in parameter space, before being “squeezed” 
in between the saddle-nodes.

Here, we focused on the key bifurcation parameters and the mathematically and dynam-
ically interesting codimension-two global bifurcations. We confirmed the presence of these 
global bifurcations in the mechanochemical model using numerical bifurcation software 
and phase-plane analysis. This analysis provides insight into the joint dynamics of cell 
signaling and mechanics and provides an example of dynamically interesting global codi-
mension-two bifurcations in a contemporary and realistic mathematical biology model.
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