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Simple Rho GTPase Dynamics Generate a Complex
Regulatory Landscape Associated with Cell Shape
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ABSTRACT Migratory cells exhibit a variety of morphologically distinct responses to their environments that manifest in their
cell shape. Some protrude uniformly to increase substrate contacts, others are broadly contractile, some polarize to facilitate
migration, and yet others exhibit mixtures of these responses. Prior studies have identified a discrete collection of shapes
that the majority of cells display and demonstrated that activity levels of the cytoskeletal regulators Rac1 and RhoA GTPase
regulate those shapes. Here, we use computational modeling to assess whether known GTPase dynamics can give rise to a
sufficient diversity of spatial signaling states to explain the observed shapes. Results show that the combination of autoactivation
and mutually antagonistic cross talk between GTPases, along with the conservative membrane binding, generates a wide array
of distinct homogeneous and polarized regulatory phenotypes that arise for fixed model parameters. From a theoretical perspec-
tive, these results demonstrate that simple GTPase dynamics can generate complex multistability in which six distinct stable
steady states (three homogeneous and three polarized) coexist for a fixed set of parameters, each of which naturally maps
to an observed morphology. From a biological perspective, although we do not explicitly model the cytoskeleton or resulting
cell morphologies, these results, along with prior literature linking GTPase activity to cell morphology, support the hypothesis
that GTPase signaling dynamics can generate the broad morphological characteristics observed in many migratory cell popu-
lations. Further, the observed diversity may be the result of cells populating a complex morphological landscape generated by
GTPase regulation rather than being the result of intrinsic cell-cell variation. These results demonstrate that Rho GTPases may
have a central role in regulating the broad characteristics of cell shape (e.g., expansive, contractile, polarized, etc.) and that
shape heterogeneity may be (at least partly) a reflection of the rich signaling dynamics regulating the cytoskeleton rather
than intrinsic cell heterogeneity.
SIGNIFICANCE Migratory cells exhibit a diverse set of shapes and behaviors. To understand the source of this diversity,
we develop a computational approach to study the dynamics of a Rho GTPase signaling model. Rho GTPases influence
cell shape and polarity through cytoskeletal regulation. We hypothesize that much of the broad shape diversity found in
imaging studies may be the result of cells exploring a complex regulatory landscape rather than a result of differences
between cells. Results show that known GTPase signaling can produce a variety of distinct regulatory phenotypes for a
fixed parameter set. Thus, although numerous factors influence cell morphology, GTPase dynamics on their own can
explain much of the broad variation in signaling that eventually affects cell shape.
INTRODUCTION

It is well documented that similar cells from a single popu-
lation exhibit different morphologies (shape in particular
(1,2)) and behaviors (amoeboid versus mesenchymal migra-
tion (3)). Where does this diversity come from? One possi-
bility is that the cells are functionally different, possibly
differing in their gene expression, protein activity levels,
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or cytoskeletal factors that determine the cells’ structure.
Another is that the cells are similar but that we observe their
exploration of a complex morphological state space. In this
article, we utilize a new, to our knowledge, computational
modeling approach to assess whether and to what extent
the dynamics of a crucial class of cytoskeletal regulators,
the Rho GTPases, may explain shape diversity in migratory
cells.

Numerous factors will influence cellular morphology.
Biophysical properties such as membrane tension and
cortical stiffness will affect bulk cell characteristics. Kerato-
cyte morphology, for example, can be explained exclusively
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by interactions between F-actin force production and
resistive membrane tension (4,5). Genetic factors will
strongly influence cell morphology; neurons and migratory
cells are vastly different, and epithelial to mesenchymal
transitions significantly alter a cell’s morphology. Environ-
mental structure will influence cell morphology as well
(two-dimensional (2D) versus three-dimensional (3D) envi-
ronments or fibrous versus nonfibrous environments). Cyto-
skeletal signaling will also play a role by regulating cellular
remodeling.

With all of these influential factors, one might expect a
nearly continuous space of diverse morphologies. This
does not, however, appear to be the case. At a high level,
genetics seems to predispose cells to take on particular char-
acteristics (e.g., neuronal versus epithelial versus migra-
tory). Within these broad classes, cells seem to exhibit a
discrete collection of morphologies. For example, cultured
Drosophila hemocytes can be classified as a heterogeneous
mixture of five discrete shapes (normal, elongated, large
ruffled, teardrop, and large smooth) (6). Drosophila BG-2
(our main focus here) cells were shown to exhibit seven
shapes varying in size and type of polarization (2). Mela-
noma cells in 3D matrices can exhibit either mesenchymal
or amoeboid modes of migration and also demonstrate a
mixture of six different shapes (star, spindle, teardrop,
ellipse, small round, and large round) (7).

This discrete, relatively restricted set of morphologies has
led to the proposition (8) that there may be a common mech-
anism underpinning cell shape determination that gives rise
to a relatively simple morphological landscape where bio-
physical and environmental forces act to tune the landscape.
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Here, we demonstrate that Rho GTPase signaling, which is
known to be central to cytoskeletal regulation (9), can
explain much of the heterogeneity observed in cell popula-
tions and thus may be a core element of this common
mechanism.

Rho GTPase proteins are known to be central regulators
of cytoskeletal remodeling across eukaryotic species (10)
and contribute to cell migration in many animal model or-
ganisms (9). Cell shape, protrusiveness, polarization (2),
and mode of migration (3,11) have all been causally linked
to Rac1 and RhoA GTPase activity levels (henceforth Rac
and Rho). Broadly, Rac activity is associated with actin
polymerization and cellular protrusion, whereas Rho activ-
ity is associated with actomyosin contraction (9,12). For
this reason, GTPase activity levels have been linked to
cell shape (Fig. 1). Cells that have high levels of Rac and
little Rho are spread out and flat, those that have low levels
of Rac and high Rho are contracted, and those with more
balanced Rac and Rho levels are more neutrally sized, being
neither obviously protrusive nor contractile (2). Addition-
ally, polarized shapes are, in many cases, characterized by
spatially distinct zones of GTPase signaling: a Rac-domi-
nated protrusive front and Rho-dominated contractile rear
(13–16) (reviewed in (17)).

Given their central role in regulating the cytoskeleton,
Rho GTPases have been the source of intense investigation
since their discovery. Nearly three decades of research (9)
have led to a picture in which these proteins sit at the center
of larger signaling network involving interactions with a
host of signals (18), the extracellular matrix (19), mechani-
cal forces (20), and membrane tension (21). In addition, Rho
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FIGURE 1 Overview of the model and modeling

approach. A schematic of the mutual antagonism,

autoactivation, and biochemical conservation Rac

and Rho GTPase signaling model investigated here

is shown. Rac and Rho GTPases exist in active,

membrane-bound, slowly diffusing forms and in

inactive, cytosolic, quickly diffusing forms. For

this model, we analyze the types of spatial GTPase

activation profiles (regulatory phenotypes) that arise

from PDE simulations (shown in the six plots in the

dashed box). We do not explicitly model cytoskeletal

remodeling or 2D cell morphology. Rather, we rely

on prior literature that has demonstrated links be-

tween cell shapes and GTPase signaling through

cytoskeletal regulation. For example, Rac-domi-

nated cells expand and protrude because of actin as-

sembly, Rho-dominated cells contract because of

myosin-based contraction, and spatially organized

Rac and Rho signals lead to polarized cells. The bot-

tom row of cartoons depicts different shapes that

would naturally be linked to different GTPase

signaling profiles. The box around the GTPase

model and spatial activation profiles indicates that

this is the focus of this article, whereas the shape

morphologies outside of this box are inferred and

not directly modeled. To see this figure in color, go

online.
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GTPases have been demonstrated to regulate each other’s
activity; they mutually antagonize each other (18,22) and
autoactivate themselves (23). Here, we use mathematical
modeling to explore the consequences of these feedback
mechanisms between Rho GTPases (independent of the
larger signaling web and the myriad physical interactions)
on the types of spatial distributions of protein activation
that form the foundation of cytoskeletal regulation.

Mathematical and computational modeling have long
been used to investigate the role of GTPases on cell dy-
namics (see, for example, (24–34) along with (35–39) for re-
views). The ‘‘wave-pinning’’ (WP) model (40–42) of
GTPase dynamics demonstrated that the combination of
nonlinear feedback (such as autoactivation or mutual antag-
onism) along with mass-conserved (un)binding dynamics
explains many aspects of polarization. More recently, (43)
showed that this same combination produces protein distri-
butions indicative of a restricted set of observed cell
morphologies. Here, we extend this work and use computa-
tional modeling to demonstrate that known GTPase dy-
namics explain a wider diversity of activation profiles then
previously shown.

In this article, we use computational modeling to investi-
gate the role of Rho GTPase dynamics in generating a vari-
ety of spatial regulatory phenotypes that are associated with
cell morphology. Rather than consider the full myriad of
biophysical, genetic, and environmental factors that affect
cells, we focus on the influence of regulatory Rho GTPase
signaling and ask how much of the observed diversity in
cell morphology could be explained by signaling dynamics
alone? Furthermore, we focus on observations from
Drosophila BG-2 cells (2), which provide a representative
sample of stable morphologies commonly observed in
many cell types. To be clear, shape is a complicated
morphological feature of a cell. For this article, we will
focus on two aspects of shape: presence versus absence of
polarity and whether the cell is predominantly spreading,
contracting, or in a more balanced configuration. We focus
on these two features because they represent broad charac-
teristics at the level of the whole cell rather than more
detailed or spatially localized characteristics that likely arise
from a myriad of interacting processes. We will therefore
not consider other features such as ruffling, nuclear location,
presence of filopodia, or the many other physical features
that contribute to cell shape.

This approach will, of course, limit the scope of results.
Cell shape and migration can be explained independently
of Rho GTPase signaling in some cases (e.g., keratocytes),
and some cells exhibit highly dynamic morphologies that
are hallmarks of feedback between signaling and remodel-
ing. Further, the partial differential equation (PDE)
modeling approach here is intended to study gross cell char-
acteristics such as size and polarity, although alternative
PDE systems could, in principle, model more refined char-
acteristics such as ruffling or filopodia. Nonetheless, this
1440 Biophysical Journal 118, 1438–1454, March 24, 2020
approach yields insights into how GTPase signaling influ-
ences cell shape and demonstrates the rich diversity that
may arise without these added complexities.

Results show that well-established cross talk interactions
between Rac and Rho generate a surprising diversity of
spatial protein activation profiles in one dimension and
two dimensions. Specifically, a single parameter set can
generate complicated multistability in which three homoge-
neous and three distinct polarized states (all stable) coexist,
each of which would be naturally associated with an
observed morphology (e.g., a cell with a GTPase distribu-
tion that is polarized but dominated by Rac activation
throughout would be associated with a large, protrusive,
and polarized cell; see Fig. 1 for a schematic). Our compu-
tational approach also reveals that the parameter space is
structured and that multistable parameter sets are mostly
polarizable. This observation leads to the main biological
hypothesis of this article: much of the variance in cell shape
within a population of cells may be a result of those cells
exploring a rich GTPase signaling regulatory landscape
rather than being a reflection of intrinsic differences be-
tween the cells (e.g., model parameters). Further, this
work highlights how well-known Rho GTPase signaling dy-
namics can act as a central element for generating regulatory
phenotypes that influence shape in a variety of cells.

The study is organized as follows. In the detailed
Methods, we describe the mathematical details of the
model, computational approach, and numerical simulations.
In Results, we introduce the GTPase signaling model
(Model Background and Description) and summarize the
novel, to our knowledge, computational approach (Compu-
tational Approach) used to assess the model’s dynamics. We
next describe the model’s predictions (The Combination of
Mutual Antagonism, Autoactivation, and Biochemical Con-
servation Leads to a Wide Array of Spatial GTPase Regula-
tory Phenotypes That Match Known Cell Morphologies),
parameter space characterization (Parameter Space Charac-
terization), and the results of numerical bifurcation analysis
(Numerical Bifurcation Analysis). In Discussion, we
conclude the work. There are also four figures and three
simulation videos collected as Supporting Material.
METHODS

Here, we describe the spatial mutual antagonism and autoactivation model

of GTPase dynamics and provide more detail about our computational

approach.
PDE model

A system of reaction-diffusion PDEs is used to model Rac and Rho GTPase

activity in the cell. We track the activity of active Rac (~R(z, t)) and Rho (~r(z,

t)) and inactive Rac (~Ri(z, t)) and Rho (~ri(z, t)). Active forms are bound

to and diffuse in the cell membrane, whereas inactive forms are free to

diffuse in the cytosol. We consider the spatial domain to be a one-dimen-

sional (1D) slice along the cell’s diameter and assume no-flux boundary
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conditions. The PDEs governing the GTPase dynamics on z ˛ [0, L] and for

time t ˛ [0, N) are

v~R

vt
¼ ~A

R�~R; ~r�~Ri � kR~Rþ DR

v2~R

vz2
; (1a)

v~R R� � v2~R
i

vt
¼ � ~A ~R; ~r ~Ri þ kR~Rþ DRi

i

vz2
; (1b)

v~r r� � v2~r
vt
¼ ~A ~R; ~r ~ri � kr~rþ Dr

vz2
; (1c)

v~r r� � v2~r
i

vt
¼ � ~A ~R; ~r ~ri þ kr~rþ Dri

i

vz2
; (1d)

with no-flux boundary conditions

vR

vz

����
z¼ 0;L

¼ vRi

vz

����
z¼ 0;L

¼ vr

vz

����
z¼ 0;L

¼ vri

vz

����
z¼ 0;L

¼ 0:

(1e)

Here, DR and Dr are the diffusion coefficients for active Rac and Rho,

and DRi
and Dri are the diffusion coefficients of the inactive forms,

respectively. Because the active forms are membrane bound, the corre-

sponding diffusion coefficients are much smaller than the inactive forms’

diffusion coefficients. We assume that the inactivation rates, kR and kr,

do not depend on Rac and Rho activity. Instead, we assume that mutual

antagonism and autoactivation occur through the activation rates,
~A
Rð~R; ~rÞ and Arð~R;~rÞ:

~AR

�
~R; ~r

� ¼ ~aR~R
n

rnR þ ~R
n þ

~bR~s
n
R

~snR þ ~rn
þ ~cR and

~Ar

�
~R; ~r

� ¼ ~ar~r
n

rnr þ ~rn
þ

~br~s
n
r

~snr þ ~R
n þ ~cr:

(1f)

Here, the activation rates are comprised of increasing or decreasing Hill

functions with exponent n. The parameters ~aR;r and ~bR;r prescribe the

strength of the autoactivation and mutual antagonism, respectively, and
~cR;r is the basal rate of activation in the absence of feedback. The parame-

ters rR,r and ~sR;r describe the amount of GTPase needed to reach the half-

maximal autoactivation and antagonistic effect on the other GTPase,

respectively.

Because the GTPases simply switch between active and inactive forms

yet are not created nor destroyed, the activity levels of Rac and Rho must

satisfy conservation statements. Indeed, adding and integrating over the

domain Eqs. 1a, 1b, 1c, and 1d givesZ L

0

~Rðz; tÞþ ~Riðz; tÞ dz ¼ L~RT and

Z L

0

~rðz; tÞ þ ~riðz; tÞ dz ¼ L~rT :

(1g)

Here, ~RT and ~rT are the mean Rac and Rho activity levels.

To reduce the number of parameters in the model, we scale the GTPase

amounts by the corresponding half-maximal autoactivation parameter, time

by the deactivation rate of Rac, and space by the cell length:
R ¼
~R

rR
; Ri ¼

~Ri

rR
; r ¼ ~r

rr
; ri ¼

~ri
rr
;

t ¼ kRt; x ¼ z

L
:

(2)

Under this scaling, the equations become

vR

vt
¼ ARðR; rÞRi � Rþ DR

v2R

vx2
; (3a)

vRi v2Ri
vt
¼ � ARðR; rÞRi þ Rþ DRi vx2

; (3b)

vr v2r
vt
¼ ArðR; rÞri � krþ Dr

vx2
; (3c)

and

vri

vt
¼ � ArðR; rÞri þ krþ Dri

v2ri

vx2
; (3d)

with x ˛ [0, 1] and t ˛ [0, N). The scaled activation rates are

ARðR; rÞ ¼ aRR
n

1þ Rn
þ bRs

n
R

snR þ rn
þ cR;

ArðR; rÞ ¼ arr
n

1þ rn
þ brs

n
r

snr þ Rn
þ cr;

(3e)

and the activity levels satisfy the conservation statements

Z 1

0

Rðx; tÞþRiðx; tÞ dx ¼ RT and

Z 1

0

rðx; tÞ þ riðx; tÞ dx ¼ rT :

(3f)

The scaled parameters are

RT ¼
~RT

rR
; rT ¼ ~rT

rr
; a� ¼ ~a�

kR
; b� ¼

~b�
kR
; c� ¼ ~c�

kR
;

D� ¼
~D�
kRL2

; D�i ¼
~D�i
kRL2

; s� ¼ ~s�
r�
; k ¼ kr

kR
;

where * ¼ R or r.

Finally, to reduce the complexity of the model, we restrict our attention to

the case aR ¼ ar ¼ a, bR ¼ br ¼ b, sR ¼ sr ¼ s, cR ¼ cr ¼c and set k ¼ 1

throughout. We also assume that the diffusion coefficients in the active state

and in the inactive state are similar between Rac and Rho GTPases so that

DR ¼Dr ¼ D and that DRi
¼ Dri ¼ Di.
Well-mixed model

In the well-mixed model, we ignore space and consider GTPase acti-

vity to be homogeneous within the cell. This reduces the equations to a

system of four ordinary differential equations (ODEs), describing the tem-

poral dynamics of GTPase activity.
Biophysical Journal 118, 1438–1454, March 24, 2020 1441



Zmurchok and Holmes
dR

dt
¼ ARðR; rÞRi � R; (4a)

dr r
dt
¼ A ðR; rÞri � r; (4b)

dRi R
dt
¼ � A ðR; rÞRi þ R; (4c)

and

dri
dt

¼ � ArðR; rÞri þ r: (4d)

Note that this system can be reduced to a system of two ODEs, which

is more readily studied (for example, in the phase plane), using the

fact that the total amount of each GTPase is assumed to be constant.

This means that the amount of inactive GTPase, Ri and ri, can be cal-

culated as Ri ¼ RT � R and ri ¼ rT � r. The reduced well-mixed model

is therefore

dR

dt
¼

�
a

Rn

1þ Rn
þ b

sn

sn þ rn
þ c

�
ðRT �RÞ � R; (4e)

dr
�

rn sn
�

dt
¼ a

1þ rn
þ b

sn þ Rn
þ c ðrT � rÞ � r: (4f)

The steady states of the well-mixed model correspond to homogeneous

steady states (HSSs) of the PDE model.
Local perturbation analysis

The local perturbation analysis (LPA), discussed in further detail in (37,44–

47), is an approximation method that facilitates the prediction about how a

spatial reaction-diffusion model will respond to spatially heterogeneous

perturbations. Specifically, this method is used to assess how an HSS of a

PDE system comprised of fast and slow diffusing variables will respond

to a spatially localized pulse-like perturbation. The fast or slow diffusion

discrepancy is then exploited to describe the evolution of that pulse-like

perturbation by a collection of ODEs that describe the evolution of concen-

trations near to (local variables) and away from (global variables) the

perturbation.

Applying this reduction method and using conservation to further

simplify the system yields the following equations describing the evolution

of the global (R, r) and local variables (R‘, r‘):

dR

dt
¼ ARðR; rÞðRT �RÞ � R; (5a)

dr r
dt
¼ A ðR; rÞðrT � rÞ � r; (5b)

dR‘ � �

dt

¼ AR R‘; r‘ ðRT �RÞ � R‘; (5c)

and

dr‘

dt
¼ Ar

�
R‘; r‘

�ðrT � rÞ � r‘: (5d)
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Here, the functions AR and Ar capture the mutual antagonism and autoac-

tivation as before.

This LPAODE system is used in two ways. First, it is simulated to deter-

mine whether a sufficiently large perturbation will yield a response. To do

this, we set the initial conditions of the global variables R, r to their HSS

values (determined by simulating the well-mixed system) and then apply

different initial conditions to the local variables R‘ and r‘. If the values

of R‘ and r‘ diverge to a new value different from the HSS, this indicates

a response has occurred. Otherwise, if the values of R‘ and r‘ converge

back to the HSS, the system is stable with respect to that perturbation.

We thus systematically apply an array of perturbations to determine if the

system will respond to any of them.

In addition to simulating the LPA ODEs directly, we also apply bifurca-

tion analysis to them to assess parameter space structure with respect to one

or two of the parameters (Figs. 3 a and 7). See subsequent sections for

further detail on this approach.
Computational approach details

We want to understand how GTPase dynamics depend on the parameters in

the mutual antagonism and autoactivation model. To efficiently produce a

near-uniform sample of the five-dimensional (5D) parameter space of inter-

est, {(a, b, c, RT, rT) ˛ R
5 j 0 % a, b, RT, rT % 5 and 0 % c % 0.25}, we

used MATLAB’s (The MathWorks, Natick, MA) Latin hypercube sampling

command with N ¼ 106 sample points and the default settings. For each

parameter set, we then successively used well-mixed analysis, LPA, and

PDE numerics to understand the spatial GTPase dynamics. Note that the re-

striction of c < 0.25 is made because larger values of c produce uninterest-

ing, monostable dynamics as a result of the dynamics becoming more linear

in nature.

First, we used the well-mixed model to find the HSSs of the PDE system.

To determine the HSSs, it is sufficient to determine the steady states of the

well-mixed model. To do so, we used a Latin hypercube sampling

method to generate 50 initial conditions (R0, r0) in the range 0 % R0 %
RT and 0 % r0 % rT. Using these initial conditions, we then numerically

solved the well-mixed model forward in time to t¼ 100 for each initial con-

dition (IC). Using the value at t ¼ 100 as a new initial condition, we

repeated this integration three times in an effort to improve the accuracy

of the steady state. Next, we classified each parameter set as monostable,

bistable, or tristable based on the number of unique (within a tolerance ¼
10�6) steady states found for each parameter set. Because the computa-

tional method (MATLAB’s uniquetol function) can only distinguish steady

states within a fixed numerical tolerance, it is possible that the method re-

ports the wrong number of steady states instead of the true number of steady

states. For example, some parameter sets that are classified as bistable may

truly be monostable despite the computational method finding two nearby

steady states that differ only slightly more than the chosen numerical toler-

ance. For the same reason, the method may report more than three steady

states for a given parameter set. In this case, the parameter set may indeed

have more than three parameter sets, or it may not. Morever, we expect mul-

tistability (i.e., more than three steady states) with the mutual antagonism

and autoactivation circuit for very select parameter values. We found 285

parameter sets (out of 106) to have more than three steady states. We

ignored these parameter sets for our investigation because they are rela-

tively rare (and therefore likely not representative of dynamics) in the

parameter space sampled.

Second, we used LPA to determine whether the parameter set could sup-

port a polarized regulatory phenotype. For each parameter set, we use the

LPAODEs to characterize the LPA stability of each of the HSS. If all eigen-

values of the Jacobian matrix of the LPA ODE system evaluated at an HSS

all have negative real part, the HSS is called LPA stable. If at least one of

eigenvalues has positive real part, the HSS is called LPA unstable. For those

HSSs that are LPA stable, we simulated a spatially localized pulse by per-

turbing the initial conditions of the local variables in the LPAODE system.

That is, we chose initial conditions for the local variables in the LPA ODE
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system R‘
0 and r‘0 to be perturbations from the HSS, (Rss, Riss, rss, riss), and

for the global variables to be the HSS values. We considered both large and

small multiplicative perturbations for initial conditions for the local vari-

ables. Large perturbations were defined as R‘
0 ¼ 10Rss and R‘

0 ¼ Rss/10,

and small perturbations as R‘
0 ¼ 2Rss and R‘

0 ¼ Rss/2 (similar for Rho).

We considered all 16 possible combinations of these local perturbations

as initial conditions and recorded whether the LPA ODE system returned

to the HSS or was attracted to a different steady state. If the LPAODE sys-

tem is attracted to a different steady state that is not another one of the other

HSSs found by well-mixed analysis for any of the HSSs found for a given

parameter set, we called that parameter set ‘‘polarizable (stimulus

required)’’ (as in Fig. 6, a–c; Table 1). Moreover, we distinguished between

those parameter sets that are polarizable with stimuli of different sizes as in

Fig. 6, g–i. Those parameter sets that are polarizable with a small stimulus

are shown as yellow points in Fig. 6, g–i, and those parameter sets that are

polarizable with a large stimulus are shown as black points in Fig. 6, g–i.

Those parameter sets that have at least one HSS that is LPA unstable are

considered ‘‘polarizable (linearly unstable)’’ (Table 1) and are shown as

red points in Fig. 6, g–i.

Third, we repeated the parameter screen with PDE numerics. With PDE

numerics, we sought to determine 1) whether or not a given HSS is observ-

able (stable with respect to noise) and 2) whether a polarized pattern is a

steady state of the PDE system. To assess 1, we used each HSS as an initial

condition but added noise to the active GTPase forms R and r and checked

for a polarized pattern. Noisy initial conditions were generated by uni-

formly choosing two random numbers r1 and r2 from the interval (�0.1,

0.1) and adding r1 to the HSS R-value and r2 to the HSS r-value. We main-

tained mass conservation by subtracting r1 from the HSS Ri-value and r2
from the HSS ri-value. If one or more HSSs were unstable with respect

to noise, we called this parameter set ‘‘polarizable (linearly unstable)’’

(as in Table 1). To assess 2, we generated a polarized initial condition

with R ¼ RT and r ¼ 0 for 0 % x % 0.5, R ¼ 0 and r ¼ rT for 0.5 <

x % 1, Ri ¼ RT/2, and ri ¼ rT/2. If a polarized pattern results, we say

this parameter set is ‘‘polarizable (stimulus required)’’ (as in Table 1); other-

wise, we say this parameter set is not polarizable. For all PDE numerics, we

used MATLAB’s pdepe function with default parameters Dx¼ 1/200, Dt¼
1/400, and integrated until time t ¼ 400. To check whether a polarized

pattern results, we computed the absolute difference between the maximum

and minimum for both GTPases. If this absolute difference is sufficiently

large (tolerance ¼ 0.01), we consider the pattern to be polarized.
Numerical bifurcation analysis

Here, we describe the methods used to produce Figs. 3 and 7. All numerical

continuation was performed using MatCont (48) in MATLAB.

We applied standard numerical bifurcation analysis to the LPAODEs (4.5)

with a¼ 0 to produce Fig. 3 a. Bifurcation analysis of the well-mixed model

(Eq. 4)was appliedwith a> 0 to produce Fig. 3 b.We producedFig. 7 a using

the LPAODEs (Eq. 5) with parameters as in Fig. 3 b. Note that 1) the local
TABLE 1 Well-Mixed, LPA, and PDE Parameter Screen Results

Parameter Sets Polarizable (Stimul

LPA Screen Monostable 890,309 66.3%

Bistable 90,305 55.7%

Tristable 19,101 84.3%

PDE Screen Monostable 890,309 18.8%

Bistable 90,305 30.6%

Tristable 19,101 22.7%

From an initial 106 parameter sets, the number of mono-, bi-, and tristable se

Approach Details for details). ‘‘Polarizable (stimulus required)’’ refers to parame

‘‘Polarizable (linearly unstable)’’ refers to those parameter sets that are LPA uns

noise around one or more HSSs in the PDE Screen. ‘‘Not Polarizable’’ refers to pa

conditions.
branches (shown in red) have a fold (saddle node) bifurcation for small

values ofRT, 2) the global HSS branch (shown in black) has fold bifurcations

(seen clearly as the points where the blue curve changes direction and stabil-

ity in Fig. 3 b), and 3) Turing bifurcations where the local branches bifurcate

from the global HSS solution branch (black curves).

To gain more insight into the structure of the broader parameter space, we

performed a two-parameter bifurcation analysis to track the critical bifurca-

tions found in Fig. 7 a. Results are shown in Fig. 7 b and copied over to

Fig. 7 c without change to compare with results from the PDE simulation

screen. We produced the boundary of the polarizable region (the red curve

in the two-parameter bifurcation diagram in Fig. 7 b) by numerically

continuing the fold bifurcation on the local branch with the lowest RT

from Fig. 7 a in the RT-rT plane. We numerically continued the fold bifur-

cations from the global branch in Fig. 7 a to produce the curves that bound

the bistable and tristable regimes in Fig. 7, c and d. These fold bifurcations

each form an unbounded ‘‘triangle’’ in the RT-rT plane with a cusp bifurca-

tion at the lower left corner. Those points in the intersection of these two

‘‘triangles’’ form the tristable regime (bounded by dark red curves), and

those points in one ‘‘triangle,’’ but not the other, form the bistable regime.

Finally, to produce the linearly unstable loop (black dashed curve) in

Fig. 7 c, we numerically continued the Turing bifurcations from Fig. 7 a.
Numerical methods for PDE simulations

To produce Fig. 4, we used MATLAB’s pdepe function with default param-

eters, Neumann boundary conditions, Dx ¼ 1/400, Dt ¼ 1/1000 and inte-

grated until time t ¼ 1000. We used homogeneous initial conditions for

active and inactive GTPases, with a local perturbation added or subtracted

from the homogeneous initial condition for 0% x% 0.1. To ensuremass con-

servation, the area of any perturbation added to the active forms is subtracted

from the inactive forms: R ¼ Rss þ Rperturb for 0% x% 0.1, R ¼ Rss other-

wise; r¼ rss þ rperturb for 0% x% 0.1, r¼ rss otherwise; Ri¼ RT � Rss �
Rperturb/10; and ri ¼ rT � rss � rperturb/10. In Fig. 4 a, Rss ¼ 1.4230, rss ¼
0.0764, Rperturb ¼ 4.2362, and rperturb ¼ �0.0764; Fig. 4 b, Rss ¼ 1.3655,

rss ¼ 1.3856, Rperturb ¼ 4.8109, and rperturb ¼ �1.3856; Fig. 4 c, Rss ¼
0.0740, rss ¼ 1.4422, Rperturb ¼ �0.0740, and rperturb ¼ �1.4422; Fig.

4 d, Rss ¼ 1.4230, rss ¼ 0.0764, Rperturb ¼ �0.0082, and rperturb ¼ 4.4212;

Fig. 4 e, Rss ¼ 0.0740, rss ¼ 1.4422, Rperturb ¼ 17.7256, and rperturb ¼
�1.4422; and Fig. 4 f, Rss ¼ 0.0740, rss ¼ 1.4422, Rperturb ¼ 4.3759, and

rperturb ¼ �0.0178.

To produce the 2D simulations in Fig. 5, we used a time-dependent finite

element method, implemented in FEniCS (49), to simulate the analogous

2D version of Eq. 6 in a circular domain of area 1. For time stepping, we

used an implicit-explicit scheme (Crank-Nicolson for time stepping, with

an explicit reaction term), similar to the method used in (50). A triangular

mesh was generated for each simulation with the FEniCS parameter ‘‘mesh

resolution’’ ¼ 40, Dt ¼ 0.001, and the total time t ¼ 50. Parameters and

initial conditions are as in Fig. 4, d–f for Fig. 4, a, b, and c, respectively,

except Rperturb ¼ 4.3759 for Fig. 4 b. Initial perturbations were applied in
us Required) Polarizable (Linearly Unstable) Not Polarizable

10.4% 23.3%

44.3% 0%

15.7% 0%

8.0% 73.2%

36.6% 32.8%

11.3% 66%

ts was determined (285 parameter sets were omitted; see Computational

ter sets that require a sufficiently large perturbation from an HSS to polarize.

table (LPA Screen) or those parameter sets that are unstable with respect to

rameter sets that did not polarize using our numerical parameters and initial
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a p/2 radians sector pointing ‘‘north.’’ Inactive GTPase activity levels were

adjusted correspondingly to maintain mass conservation upon local pertur-

bation (Fig. 5 b uses different initial conditions than Fig. 4 e because there is

insufficient inactive GTPase activity to apply a perturbation of the same

amplitude over the quarter circle and maintain positive mass).
Well-mixed
(ODEs)

Parameter set

RhoCoexistence

Data availability

All code and data (including code to make the figures) are available as an

archived GitHub repository at https://doi.org/10.6084/m9.figshare.

9176252.
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FIGURE 2 Overview of computational approach to assess the GTPase

signaling model’s dynamics and parameter space structure. Latin hypercube

sampling is used to obtain a computationally efficient sample of five-

dimensional (5D) parameter space. For each parameter set, we use well-

mixed analysis (based on ODE integration) to first determine the number

and possible homogeneous steady states (HSSs). Next, we use the local

perturbation analysis (LPA) to efficiently assess the nonlinear stability of

each HSS and classify each parameter set as nonpolar or polarizable. Polar-

ization may result from a spatially localized stimulus (depicted as a pulse-

like stimulus from the HSS) or from noise (if the HSS is linearly unstable).

Lastly, we use numerical simulations of the reaction-diffusion PDEs to

verify the predictions of the well-mixed and LPAmethods. To see this figure

in color, go online.
RESULTS

Our goal here is to study the consequences of known
GTPase dynamics (Fig. 1) to determine the extent to which
they may generate a variety of spatial activation profiles,
referred to as ‘‘regulatory phenotypes,’’ that can influence
cell shape. Toward this end, we study a spatiotemporal
model of GTPase dynamics that incorporates the primary
known characteristics of Rac and Rho dynamics: autoactiva-
tion, mutual antagonism, and conservation (Fig. 1).
Numerous past investigations have studied the temporal dy-
namics of this canonical mutual antagonism and autoactiva-
tion system (51–53). This study differs from such prior
studies of this motif in two ways. First, it focuses on spatial
dynamics in the context of cell polarity. Second, we incor-
porate biochemical conservation, which is known to be a vi-
tal aspect of Rho GTPase dynamics that leads to the
formation of new spatiotemporal behaviors such as wave-
pinning (32,40–42,54). To characterize the spatiotemporal
behaviors of this mutual antagonism, autoactivation, and
conservation system in a systematic fashion, we use a multi-
faceted approach combining well-mixed analysis, LPA
(37,44–47), and PDE simulation with unsupervised param-
eter space screening (Fig. 2).

Note that although our intention is to investigate links be-
tween GTPase signaling dynamics and cell morphology, we
have chosen not to simulate full moving and deforming cells.
Instead, we approach this problem from the perspective of
investigating spatial GTPase activity, which has been caus-
ally linked tomorphology ((2,9,12–17), etc.). For this reason,
we associate GTPase activity levels to cell shape (Fig. 1)
through known cytoskeletal regulation pathways. Full dy-
namic cell simulations would require numerous assumptions
that are, at this point, notwell informed by data (to our knowl-
edge). For example, although it is known that Rac and Rho
activity are associated with protrusive and contractile forces
in isolation, what happenswhen both are highly activated in a
region of the cell? When a cell expands because of protru-
sion, is cell volume or membrane surface area conserved?
How does tension influence signaling (if at all)? To focus
on the role of signaling in influencing morphology, we
consider only static cell phenotypes (fixed domains from a
modeling and simulation perspective) and leave these ques-
tions for subsequent studies.
1444 Biophysical Journal 118, 1438–1454, March 24, 2020
Model background and description

This study is inspired by and bridges two primary bodies of
literature regarding cell polarity regulation andmultistability
in gene regulation. Studies of cell polarity (40–43) have re-
vealed that the combination of GTPase conservation and
either mutual antagonism or autoactivation leads to a novel
type of dynamic referred to as wave-pinning (WP). These
WP dynamics are characterized by reaction-diffusion trav-
eling waves that become ‘‘pinned’’ in the domain, generating
a region of high GTPase activity and a region of low GTPase
activity. These regions form a polarized pattern with ‘‘front’’
and ‘‘rear’’ corresponding to regions of high and low activity,
respectively. Fig. 3 a demonstrates (using a relatively new
method, the LPA, which is described further in Methods)
that the combination of mutual antagonism and GTPase con-
servation can lead to a set of spatial Rho GTPase activation
profiles including uniformly Rac-activated, uniformly Rho-
activated, or polarized states. In this figure, the black

https://doi.org/10.6084/m9.figshare.9176252
https://doi.org/10.6084/m9.figshare.9176252
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FIGURE 3 Bistability, tristability, and polariza-

tion. (a) LPA bifurcation analysis of the mutual

antagonism model (a ¼ 0, similar to results in

(43)) is shown. The global (black curve) and local

solution branches (red curve) are shown along with

their stability (solid, stable; dashed, unstable). A re-

gion of well-mixed bistability is enclosed in a larger

region where stimulus induced polarization is

possible (via a perturbation across a threshold).

Gray arrows illustrate how a local perturbation R‘

may induce a response. A perturbation from the

HSS may drive system to the local branch or may

be insufficient to induce a response. In the former

case, the LPA predicts that the perturbation will

grow to the local branch driving pattern formation.

Note also that as the parameter RT changes, the

global branch changes stability at the points where the local branch bifurcates, indicating the possibility for spontaneous pattern when the HSS becomes

linearly unstable. Parameters are b ¼ 1, c ¼ 0, s ¼ 0.5, n ¼ 3, and rT ¼ 2. (b) Well-mixed bifurcation analysis of the mutual antagonism and autoactivation

model (a > 0) is shown. Tristability is possible with both autoactivation and mutual antagonism. The middle branch is referred to as the coexistence HSS,

with both Rac and Rho activity are at moderate levels. Parameters are a ¼ 1.8, b ¼ 4, c ¼ 0, s ¼ 0.5, n ¼ 3, and rT ¼ 2. To see this figure in color,

go online.
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bifurcation branch illustrates well-mixed solutions of this
model (and their stability) as a function of the amount of total
Rac in themutual antagonism system (RT). In LPA terms, this
is referred to as a ‘‘global branch’’ because it represents solu-
tions that are globally uniform. The red branch provides in-
formation about spatial pattern formation. In short (further
details about the LPA can be found in the explanatory article
(46)), the mere presence of these red branches indicates the
potential for pattern formation. These are referred to as
‘‘local branches’’ in LPA terms because they provide infor-
mation about how the system will respond to spatially local-
ized, pulse-like perturbations. The solid red branches
represent different states that a spatially localized, pulse-
like perturbation can attain, and the dashed red lines repre-
sent response thresholds that a perturbation must exceed to
elicit a response. For example, consider the roughly RT ¼
1.5 state. Here, there is a single HSS. However, the red
branches indicate that if a perturbation is applied that raises
the local activation levels above the dashed red line, they
will be attracted to the solid red line. This indicates the poten-
tial for a patterning response because one part of the spatial
domain may achieve a higher activation level than the rest
of the domain. Further inspection of Fig. 3 a thus suggests
that there is a regime of parameter space where polarized
states coexist with both low-Rac and high-Rac well-mixed
steady states (see (43) for a complete bifurcation diagram).

The cell polarity literature has not considered the conse-
quences of both autoactivation and mutual antagonism
jointly acting on the formation of polarized signaling pat-
terns. On the other hand, the simple tristable circuit
comprised of mutual antagonism and autoactivation has
been extensively studied in gene expression literature (51–
53). Fig. 3 b illustrates a typical well-mixed bifurcation
diagram showing the well-known tristability in this system
(i.e., for intermediate values of RT, there are three stable
HSSs). Much of this literature has focused on temporal as-
pects of this system and, because much of this work is
related to gene regulation, does not consider the conse-
quences of biochemical conservation.

We study the spatiotemporal consequences of all three of
these elements (mutual antagonism, autoactivation, and
biochemical conservation) regulating cell dynamics, all of
which are pertinent to GTPase signaling. Toward this end,
we thus consider a PDE model of this system utilizing stan-
dard Hill function representations of feedback pathways:

vR

vt
¼

�
a

Rn

1þ Rn
þ b

sn

sn þ rn
þ c

�
Ri � Rþ D

v2R

vx2
; (6a)

vr
�

rn sn
�

v2r
vt
¼ a

1þ rn
þ b

sn þ Rn
þ c ri � rþ D

vx2
; (6b)

vRi

�
Rn sn

�
v2Ri
vt
¼ � a

1þ Rn
þ b

sn þ rn
þ c Ri þ Rþ Di

vx2
;

(6c)

and

vri

vt
¼ �

�
a

rn

1þ rn
þ b

sn

sn þ Rn
þ c

�
ri þ rþ Di

v2ri

vx2
:

(6d)

Here, we model the GTPase activity in a 1D domain (0%
x % 1) with no-flux boundary conditions, representing an
averaged cross section of a cell without the distinction of
membrane and cytosol (motivated by previous work that ex-
plains how an averaged 1D model is sufficient to account for
cell geometry, the membrane, and the cytosol (38)). R(x, t)
and r(x, t) are the slowly diffusing (D) membrane-bound
active forms of Rac and Rho GTPase, and Ri(x, t) and
Biophysical Journal 118, 1438–1454, March 24, 2020 1445
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ri(x, t) are the freely diffusing (Di) cytosolic inactive forms.
Because theGTPases simply switch between active and inac-
tive forms with no production or degradation on the time-
scales of interest, the total amount of each GTPase is
conserved:

R 1

0
Rþ Ri dx ¼ RT and

R 1

0
rþ ri dx ¼ rT . The

activation rates (terms in parenthesis) capture the feedback
between GTPases: a is the strength of the autoactivation, b
is the strength of the mutual antagonism switch, s gives the
value of GTPase for which half-maximal mutual antagonism
occurs, c is the baseline activation rate of GTPase, and n pre-
scribes the ‘‘steepness’’ of each Hill function (as n / N,
these functions approach sharp on-off switches). For
simplicity, the parameters a, b, c, s, and n are assumed to
be the same for Rac and Rho, and the system has been non-
dimensionalized so that the half maximum of the autoactiva-
tion Hill function is 1 and the deactivation rates are 1. See
Methods for full model details.
Computational approach

The goal of this study is to broadly characterize the different
steady-state spatial distributions of activated GTPase con-
centrations arising from this model. Rather than simply
choose a representative parameter set to study, we have
developed an efficient approach to map spatiotemporal re-
gimes of behavior of this system throughout parameter
space. This is a multifaceted approach that combines the
use of well-mixed analysis, LPA (a relatively new nonlinear
perturbation analysis method), and PDE simulation to
perform an unsupervised screen of parameter space.

To characterize the model behavior, we use Latin hyper-
cube sampling to generate a computationally efficient sample
of high-dimensional parameter space (Fig. 2). For each
parameter set, we utilize three methods of analysis that pro-
vide increasinglymore refined information about themodel’s
dynamics. 1) Well-mixed analysis is used to determine what
kinds of spatially HSSs are present, e.g., Rac dominated,
coexistence, or Rho dominated. 2) The LPA is used to rapidly
assess whether nonuniform steady states (e.g., polarization)
are expected. This is a highly efficient approximate nonlinear
perturbation analysis that predicts whether the model re-
sponds to a sufficiently large perturbation and give rise to a
spatial pattern. 3) Finally, PDE simulation is used to check
for and determine the nature of pattern formation. Thismulti-
faceted approach combines all three methods into a coherent
computational framework. For a detailed description of each
of these methods, see Methods.
The combination of mutual antagonism,
autoactivation, and biochemical conservation
leads to a wide array of spatial GTPase regulatory
phenotypes that match known cell morphologies

Before broadly characterizing the parameter space dy-
namics of this model, we first illustrate the types of states
1446 Biophysical Journal 118, 1438–1454, March 24, 2020
this system elicits and discuss how those map onto previ-
ously observed cell morphologies. For a single parameter
set, a system comprised of mutual antagonism and autoacti-
vation can elicit three or even four distinct, stable well-
mixed states. Alternatively, either of these feedback
mechanisms in conjunction with biochemical conservation
is known to yield coexistence of uniform and polarized
steady states (43). We thus hypothesize that the combination
of all three may yield a variety of diverse stable spatial pro-
tein distributions, each of which corresponds to a distinct
cell morphology.

PDE simulation results for select parameter sets show that
this is indeed the case (Fig. 4). Fig. 4, a–f demonstrate that
for a single parameter set, three possible HSSs, along with
multiple polarized states, are stable. Each of these regula-
tory phenotypes can be associated with a cell morphology
through known cytoskeletal regulation, as shown by the
inset cartoons in Fig. 4. Given the propensity for Rac to
generate protrusion and Rho contraction, Rac-dominated
states would be associated with large spreading cells, and
Rho-dominated states with small contracting cells. Alterna-
tively, the state in which both are at moderate levels would
be associated with a balanced rest state that is neither overly
protrusive nor contractile. Importantly, this simple system
can give rise to each of these protein distributions for a sin-
gle parameter set.

Surprisingly, these results also show that in addition to
producing multiple well-mixed states, a single parameter
set can produce multiple distinct polarized states. Fig. 4,
d–f illustrate that for a single parameter set, multiple polar-
ized patterns are stable. The heterogeneous states Fig. 4, d–f
would be associated with a polarized cell that protrudes on
one side and contracts on the other. Although each of those
three states are polarized, they are distinct. In the case of
Fig. 4 d, a uniformly high-Rac but still polarized state would
be associated with a large, broadly protrusive but polarized
morphology. The uniformly low-Rac, polarized state in
Fig. 4 f would be associated with a smaller, more contracted
polarity state. Finally, the more balanced polarity state in
Fig. 4 ewould correspond to an intermediate polarized state.
Importantly, each of these polarity states stems from a single
parameter set.

Each of the three polarity states are the endpoint of nu-
merical simulations and thus they should be stable attracting
states. To verify this, we performed additional PDE simula-
tions. For the fixed parameter set (the ones used in Fig. 4),
we simulated a collection of 25 initial conditions represent-
ing pulse-like perturbations of a homogeneous state. Each
consisted of a uniform profile on the interval 0.1 < x % 1
with either an elevated or depressed value for the active
Rac or Rho on the interval 0 % x % 0.1. Five different
values of Rac and Rho perturbations were considered
respectively, leading to 25 total perturbations. PDE simula-
tion results (Figs. S1–S3) show that with this array of
initial conditions, each of the six steady states shown in
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Fig. 4 occur for multiple initial conditions, suggesting that
these six steady states are attractors. This does not, of
course, rule out the existence of other steady-state solutions.

To further illustrate that these polarized patterns are stable
attracting states, we numerically simulated the PDE system
in a circular 2D domain. For the same set of parameters in
Fig. 4, multiple polarized GTPase distributions are stable
in a circular 2D domain. Fig. 5 shows the steady-state spatial
GTPase activities in a Rac-dominated (Fig. 5 a), balanced
(Fig. 5 b), and Rho-dominated (Fig. 5 c) polarization pattern
(the HSSs from Fig. 4, a–c are easily obtained and are there-
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FIGURE 5 Example PDE simulations of diverse GTPase regulatory phenotyp

activity; bottom panels: steady-state Rho activity. (a) Rac-dominated polarity is s

(d) Quantification of GTPase spatial gradient strength for each regulatory phenot

GTPase activity from each panel). Parameters are the same as in Fig. 4. See Video

conditions, see Numerical Methods for PDE Simulations. To see this figure in
fore not shown). Quantifying the difference between the
maximal and minimal Rac and Rho GTPase activity illus-
trates (Fig. 5 d) the steepness of the polarized gradient for
each of the observed polarities matching the distributions
found in the 1D simulations shown in Fig. 4. See Videos
S1, S2, and S3 for animations of the polarization patterns
in Fig. 5, a–c. With additional mathematical modeling to
incorporate relevant biophysical properties and cellular
behavior, it could be possible to connect the active GTPase
distributions to cell shape changes; however, we leave this
challenging task to future studies.
nim-xamesaPTGdominated d

es from a single parameter set in a 2D domain. Top panels: steady-state Rac

hown. (b) Balanced polarity is shown. (c) Rho-dominated polarity is shown.

ype is shown (the difference between maximal GTPase activity and minimal

s S1, S2, and S3 for animations. For details on numerical methods and initial

color, go online.

Biophysical Journal 118, 1438–1454, March 24, 2020 1447



Zmurchok and Holmes
In conclusion, this simple model combining known as-
pects of GTPase regulation gives rise to a variety of possible
steady-state protein distributions, both homogeneous and
heterogeneous. Furthermore, a single parameter set can
give rise to a variety of possible steady states. This has
both theoretical and biological consequences. Theoretically,
these results demonstrate that simple signaling dynamics
can give rise to a much more diverse set of spatial activation
profiles than previously thought. Biologically, these results
suggest that it is possible for a population of identical cells
to exhibit a wide diversity of morphologies. That is, two
cells may look different not because they have different un-
derlying ‘‘parameters’’ but because they simply ended up in
different parts of the underlying state space generated by a
single (or similar) set of parameters.
Parameter space characterization

We analyze the full structure of the parameter space for the
GTPase signaling model (Fig. 6, details in Computational
Approach Details). We generated a sample of 106 parameter
sets through Latin hypercube sampling so that each param-
eter set is a unique combination of five model parameters: a,
b, c, RT, and rT. Well-mixed analysis is used to classify each
parameter set based on the number of linearly stable HSSs
a b c

d e f

g h i
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present as monostable, bistable, or tristable. As expected,
we find that each of these three regimes are present:
�89% of the parameter sets are monostable, 9% bistable,
and 2% tristable (Table 1). In the bistable case, the two
HSSs are, respectively, either Rac or Rho dominated (i.e.,
Fig. 4, a and c). In the tristable case, both these are present
along with a balanced state, namely, the coexistence HSS, in
which Rac and Rho are at uniform and comparable levels
(Fig. 4 b). We note that the relative sparsity of multistable
parameter sets largely results from multistability being
restricted to lower values of the basal activation rate (c;
see Fig. 6 a) and that a lower ceiling on that parameter could
significantly affect these fractions. Nonetheless, mono-
stability is most prevalent as expected.

We next assessed the capacity for polarization in these
mono-, bi-, and tristable parameter regimes. Specifically,
we simulated the evolution of a spatially localized pulse-
like perturbation using the LPAODEs and assessed whether
it was possible for that perturbation to achieve a stable
‘‘local’’ state (see Methods for further detail). This approach
essentially allows us to determine whether the GTPase ac-
tivity has the capacity to respond to a spatial stimulus for
a given parameter set and, if so, whether that response re-
quires a sufficiently large stimulus or results from linear
instability. This analysis indicates a large proportion of
FIGURE 6 Unsupervised simulation screen re-

veals a nested parameter space structure. Each point

represents a sample from the Latin hypercube sam-

ple, so that each point has unique values of a, b, c,

RT, and rT. Each panel shows a 3D projection of

the 5D parameter space. (a–c) The LPA parameter

screen reveals parameter space structure, with trista-

ble polarizable (red) parameter sets nested inside bi-

stable polarizable (yellow) parameter sets nested

inside a large region of monostable polarizable

(gray) parameter sets. Nonpolarizable monostable

parameter sets are not plotted. These parameter

sets would fill out the empty space in (a)–(c).

(d–e) The PDE Parameter Screen confirms the

parameter space structure predicted by the LPA

(plotting conventions as in a–c). (g–i) For each tri-

stable parameter set, the level of stimulus (none,

small, large) required to elicit a polarization

response from the coexistence HSS is shown. For

yellow points, a stimulus double or half the value

of the HSS active protein concentration yields a

response. For black points, a stimulus greater than

10 times or one-tenth the value of the HSS concen-

tration yields a response. When the coexistence HSS

is LPA unstable (red points), any perturbation away

from the coexistence HSS may result in polariza-

tion. Other parameters are s ¼ 0.5 and n ¼ 3. To

see this figure in color, go online.
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parameter sets may have the potential to elicit additional po-
larization states; 76.7% of monostable, 100% of bistable,
and 100% of tristable parameter sets are polarizable (Table
1). These results suggest that all multistable parameter sets
may have the capacity for polarity. We say ‘‘may’’ because
the results of the LPA are only approximate and require nu-
merical PDE simulations for verification (see subsequent re-
sults). Nonetheless, LPA predicts that polarization is
common in the sampled parameter ranges and is more prev-
alent among multistable parameter sets than monostable
parameter sets.

Visualization of the parameter space structure using the
LPA simulation screen results (Fig. 6, a–c) reveals why
the multistable parameter sets are all predicted to be polariz-
able. Each panel of Fig. 6 shows a 3D scatter plot obtained
from projecting the 5D Latin hypercube sample of param-
eter space to three dimensions. Each point represents a
parameter set with unique values of a, b, c, RT, and rT color
coded as indicated in the legend. For example, in Fig. 6, a, d,
and g, each point has unique RT- and rT-values, but these di-
mensions are not shown in the plot. The parameter space of
this model has a clear nested structure. The nucleus of this
parameter space (red points indicate tristability with polari-
zation) is a regime in which a fixed parameter set can give
rise to multiple regulatory phenotypes. This is nested in a
parameter regime in which heterogeneity is more restricted
(yellow points indicate bistability with polarization). This is,
in turn, nested within a much more widespread and ubiqui-
tous parameter regime in which polarity is possible but in
which each parameter set emits only a single HSS along
with polarity (gray points indicate monostability with polar-
ization). Thus, consistent with the quantification results in
Table 1 and prior analysis (43), the multistable parameter re-
gimes appear to lie within a broader polarizable regime.

Note that those parameter sets which are monostable and
nonpolarizable are not shown in Fig. 6. These parameter sets
fill out the rest of the ‘‘empty space’’ in Fig. 6, a–c and
appear to be most distant from the multistable nucleus.
Additionally, Fig. 6 contains red points (representing trista-
ble polarizable parameter sets) that appear isolated from the
bulk of similar parameter sets. The apparent isolation could
result from 1) the 3D projection of 5D data, 2) an unusual
5D combination of parameters, or 3) numerical thresholding
errors (see Computational Approach Details) in determining
the number of steady states (i.e., mistakenly classifying
these as tristable parameter sets when they are really
mono- or bistable). Despite these rare isolated points, the
parameter space structure appears to have a clear nested
structure.

To verify the predictions of the LPA, we repeated the
parameter screen with full PDE numerics. Previous studies
have suggested that the LPA predicts that parameter regimes
in which polarization or pattern formation occurs are larger
than they are in the actual PDEs (45). In other words, the
LPA overestimates the regions of parameter space that pro-
duce interesting behavior such as polarization (or other
pattern formation in other systems). It would thus be most
efficient to use the LPA to pare down the number of param-
eter sets for which PDE simulations are performed. How-
ever, this approach has not been fully validated, and thus,
we simulate the PDEs for all parameter sets. For each
parameter set, we assessed whether or not each HSS is sta-
ble with respect to noise and whether a polarized pattern can
be found. Specifically, to assess whether each HSS is stable
or unstable, we added noise to each HSS as an initial condi-
tion and observed the response. To determine if a particular
parameter set will polarize in response to a sufficiently
strong perturbation, we used a polarized pattern as an initial
condition and assessed whether the system evolved to a
polarized or homogeneous state (details in Computational
Approach Details). Although there are differences between
the PDE and LPA results, the qualitative conclusions are
consistent (Fig. 6, d–f). First, an array of individual param-
eter sets can still give rise to diverse steady-state spatial
distributions of protein activation. Second, the nested
parameter space structure is still observed. Third, polariza-
tion appears to be more common in multistable regimes
than monostable regimes.

The main discrepancy between the PDE and LPA results
is that there are many parameter sets in which the LPA pre-
dicts polarization is possible but in which PDE simulations
do not achieve polarity. This discrepancy appears to be most
prominent in the tristable and polarizable case, in which the
PDE analysis suggests that a large proportion of tristable
parameter sets do not give polarized patterns, whereas the
LPA screen suggests all tristable parameter sets are polariz-
able (66% of tristable parameter sets are not polarizable in
the PDE screen, whereas 0% are not polarizable in the
LPA screen; see Table 1). Inspection of Fig. 6, b and e sug-
gests that there is a particular region of the tristable param-
eter space that the LPA appears to falsely predict is
polarizable. More generally, further mining of the LPA
and PDE screen results shows that approximately 48.74%
of parameter sets predicted to polarize by the LPA fail to
do so when simulating the PDEs with our limited set of
initial conditions and fixed diffusion coefficients. However,
effectively all parameter sets that polarize in PDE simula-
tions are predicted to do so by the LPA; the LPA failed to
predict polarization of only 0.0494% of parameter sets
that actually polarize in PDE simulations. Combined, these
results demonstrate that the LPA is conservative in its pre-
diction of interesting dynamics in the sense that it detects
essentially all dynamically interesting parameter sets but
generally predicts regimes of behavior to be larger than
they are for the PDEs.

Based on the discrepancy between the LPA and PDE re-
sults and the general interest in this parameter regime that
generates a rich state space, we next focused on the regime
predicted to be tristable and polarizable by the LPA. Specif-
ically, we assessed (Fig. 6, g–i) whether the coexistence
Biophysical Journal 118, 1438–1454, March 24, 2020 1449
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HSS of tristable parameter set was linearly unstable (red
points) and thus would polarize in response to any stimulus,
stable but easy to polarize with a relatively small stimulus
(yellow points), or strongly stable, requiring a large
stimulus for polarization (black points). The LPA unstable
points form a ‘‘shell’’ around the LPA stable points, suggest-
ing that it is more difficult for the system to polarize if its
parameters are further into the tristable regime. We quanti-
tatively analyzed the apparent nested structure by calcu-
lating the distribution of distances from parameter sets of
interest to the center of mass of the entire parameter sample
(Fig. S4). The LPA unstable points appear to be further from
the center of mass in parameter space than the LPA stable
points, indicating that the LPA stable points form the nu-
cleus of parameter space. Interestingly, comparison of
Fig. 6, b, e, and h shows that the ‘‘hard to polarize’’ tristable
sets match up with those that were falsely predicted to
polarize by the LPA. This suggests that parameter sets that
reside deeper in the tristable regime are more stable against
spatial perturbations and that this point is the source of the
discrepancy between the PDE and LPA results.

In conclusion, these results reveal that polarization is fairly
ubiquitous throughout parameter space. The parameter space
has a well-defined nested structure in which some regions
yield more diversity of states (e.g., the number of possible
steady states for a given parameter set) than others. These re-
sults also demonstrate that the diversity of potential morpho-
logical states shown in Figs. 4 and 5 is not an artifact of a
single parameter set, but rather is indicative of an entire
regime of behavior that lies at the very core of this parameter
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space. Finally, these results also demonstrate the power of
this approach tomapping the structure of the parameter space
of this model. Although there are discrepancies between the
LPA (which is much more computationally efficient) and
PDE (which is more accurate) approaches, the qualitative
conclusions are generally consistent.
Numerical bifurcation analysis

To supplement the computational approach, we used numer-
ical bifurcation analysis to study the bifurcation structure of
this model. This alternative approach provides 1) another
method to study parameter space structure, 2) a direct com-
parison to bifurcation analysis in previous work (43), and 3)
validation for our computational approach.

To perform this analysis, we first convert the GTPase
model to a system of LPA ODEs. The numerical continua-
tion package MatCont (48) is then used to perform a bifur-
cation analysis of that reduced system. This allows us to
directly compare the dynamics of this system to that of
the simpler systems consisting of only mutual antagonism
or autoactivation in (43). Results show that the structure
of the bifurcation diagram (Fig. 7 a) is qualitatively similar
to that of the mutual antagonism model (Fig. 3 a) in the
sense that regimes of coexisting multistability and polariza-
tion are present. However, the inclusion of autoactivation
can result in tristability (Fig. 7, a and b), which does not
occur in a model with only mutual antagonism.

Comprehensive bifurcation analysis with respect to all
model parameters of this system is beyond the scope of
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this article. Bifurcation analysis does provide an alternative
approach to demonstrate the presence of rich regimes of
behavior with diverse, coexisting GTPase activation states
that map onto different cell morphologies.

Motivated by the previously observed nested parameter
space structure and by the previous bifurcation analysis in
(43), we next examined the bifurcation structure in the
(RT, rT) plane (Fig. 7 b). We again found the nested param-
eter space structure with the region of polarizability encom-
passing both the bistable and tristable regimes (see Methods
for details on Fig. 7 b).

Lastly, as additional verification of the parameter space
structure, we projected a slice of the data from the PDE
parameter screen (Fig. 5, d–f) onto the two-parameter
bifurcation diagram (Fig. 7 d). The red points indicate
tristable and polarizable parameter sets, yellow points
are those parameter sets that are bistable and polarizable,
and the gray points are those parameter sets that are mono-
stable and polarizable. We find agreement between the
two-parameter bifurcation diagram and the parameter
screen, further validating our computational approach.
We do note once again that although the agreement is
not perfect, the regimes of behavior predicted to yield
interesting dynamics by the LPA are generally larger than
actual regimes found through brute-force PDE simulation.
Thus, the LPA appears to capture all interesting regimes
of behavior, though it does overpredict the size of those
regimes.

In conclusion, numerical bifurcation results confirm the
nested parameter space structure and coexistence of polari-
zation in the monostable, bistable, and tristable regimes that
was found using the LPA and PDE parameter screens. More-
over, the LPA bifurcation structure in Fig. 7 a has similar
qualities to that in Fig. 3 a, suggesting that the addition of
autoactivation to the previously studied mutual antagonism
and conservation system (as in (43)) adds to the structure of
the parameter space rather than fundamentally altering it.
The addition of autoactivation leads to the genesis of a tri-
stable and polarizable parameter regime nested within the
bistable and polarizable regime that forms the nucleus of
the parameter space.
DISCUSSION

Past quantification of cell shape diversity among various
types of cells has revealed three essential observations. First,
cells exhibit a restricted and discrete set of morphologies.
Second, cells of different types (within migratory cell types,
at least) exhibit the same set of morphologies. Third, cells of
the same type can exhibit diverse cell shapes despite being
derived from the same lineage. Our work here provides a
hypothesis for how this landscape of discrete cell morphol-
ogies may arise from a diverse set of GTPase regulatory
phenotypes and how seemingly similar cells can exhibit
the full spectrum of that diversity.
In this study, we used computational modeling and anal-
ysis to demonstrate that the simple and well-known dy-
namics of Rho GTPase signaling can generate a wide
variety of regulatory phenotypes. Of course, a myriad of
factors—including genetic, regulatory, biophysical, and
environmental factors—will jointly influence a cell’s
morphology. However, Rho GTPases are well-known cyto-
skeletal regulators whose activity levels have been causally
linked to cell shape (2). We thus conclude that this variety
of regulatory phenotypes may explain a significant amount
of cell shape diversity found in cellular populations. The
simple reaction-diffusion model including autoactivation,
mutual antagonism, and biochemical conservation recovers
at least six GTPase activity profiles associated with
different morphologies observed in recent studies (2)
(although it does not capture fine-scale signaling or shape
details such as ruffled or spiky shapes, as seen in these
studies). Interestingly, it is not simply the case that
different regions of parameter space yield different regula-
tory phenotypes. Rather, individual states of the model
(i.e., parameter sets) can yield a variety of different regula-
tory phenotypes.

These results suggest that 1) Rho GTPase dynamics can
explain much of the diversity of cell shapes observed exper-
imentally and 2) diverse regulatory phenotypes may arise
even in the absence of any intrinsic differences between
cells. The dynamics of Rho GTPase regulation can thus
explain both the presence of the discrete morphological
landscape observed in a variety of cell populations, as
well as how populations of seemingly similar cells from
the same source can explore that full landscape.

To facilitate exploration of the dynamics of this spatial
model of GTPase dynamics, we further developed a
computational approach to efficiently and broadly explore
the model’s parameter space to determine where different
types of regulatory phenotypes would be expected to
appear. Thus, rather than pick a representative parameter
set, we explored the entirety of parameter space to deter-
mine the full scope of dynamics possible. Results reveal
a highly structured parameter space where different
parameter regimes exhibit varying levels of diversity of
regulatory phenotypes. In particular, the model’s parameter
space has a nested structure in which the nucleus is
comprised of parameter sets that can individually give
rise to multiple spatial protein activation states that corre-
spond to a variety of different shapes. A lower diversity
of states is found further from the nucleus of this nested
parameter space.

These results confirm conclusions of large-scale statisti-
cal analyses of cell shape data sets that have shown the
presence of cell shape ‘‘attractors’’ (2) and hypothesized
that transitions between these attractors may be driven by
environmental perturbations that affect GTPase signaling
(6). They further demonstrate that the simple, well-estab-
lished cross talk interactions between Rac and Rho can
Biophysical Journal 118, 1438–1454, March 24, 2020 1451
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produce the majority of those observed ‘‘attractors.’’ Thus,
although a number of other factors undoubtedly influence
morphology, these central cytoskeletal regulators are suffi-
cient to produce much of the observed heterogeneity.

The structured parameter space we observe also has
similar properties to the structure found in prior mathemat-
ical analyses of spatiotemporal GTPase dynamics. In (43)
and (55), bifurcation analyses illustrated a similar nested
structure to parameter space. Results here differ from those
of prior studies in two important ways. First, we explore a
more complete model of Rho GTPase cross talk that ac-
counts for both autoactivation and mutual antagonism rather
than only one of these mechanisms. Including the combina-
tion of these interactions is responsible for the increased het-
erogeneity observed in model results. Without both these
feedback mechanisms, the regulatory phenotypes found
are more limited (43). Second, we have utilized an unsuper-
vised parameter space screening (similar to that found in
(56–59)) method based on LPA to generate a more compre-
hensive understanding of the model’s dynamics and
structure.

Further work is needed to understand the link between
cell signaling and cell morphology. We have focused
only on the core signaling dynamics of Rho GTPases to
assess the types of spatial protein distributions that those
dynamics generate. We did not consider the myriad of
complex interactions and feedback mechanisms between
cytoskeletal regulation, remodeling, adhesion, cytoskeletal
flows, membrane mechanics, etc. Thus, in one sense, we
assess the maximal scope of heterogeneity that could be
explained through signaling alone. Full spatial cell simula-
tions based on these GTPase distributions in two dimen-
sions (60–63) or three dimensions (64) or those that
more accurately capture the cytosolic-membrane binding
dynamics of GTPase signaling (65,66) are needed to
further investigate how these factors would influence cell
morphology. Alternatively, extensions to account for the
broader signaling network (e.g., (67)) regulating cytoskel-
etal remodeling will also be required to understand how
other molecular regulators (GEFs and GAPs, for example)
affect morphology.

Despite these limitations, this study demonstrates that the
known regulatory interactions between these proteins can
(at a qualitative level) generate the full landscape of regula-
tory phenotypes that are associated with cell morphologies
found in imaging studies. Furthermore, detailed analysis
of the model’s parameter space structure shows that these
regulatory phenotypes coexist in parameter space, explain-
ing how similar cells of the same fate drawn from a single
population can exhibit a wide variety of differing morphol-
ogies. More generally, these results suggest Rho GTPases
may play a significant role in regulating cell shape and,
given their ubiquity in migratory cells, may be a founda-
tional part of a common mechanism regulating cell shape
in different cell types.
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Supporting Figure 1. Initial condition PDE screen from the Rac-
dominated HSS in a tristable parameter set. Each panel shows the steady-
state active Rac (bold blue curve) and Rho (thin green curve) GTPase activity
resulting resulting from a spatially heterogeneous initial condition with the parame-
ters used in Figures 4 and 5. Given the model parameters, it is possible to obtain the
Rac-domainted steady-state, balanced polarity pattern, and a Rac-dominated polar
regulatory phenotype from perturbations to the Rac-dominated HSS. The initial
conditions RIC and ρIC for each simulation consist of local perturbations (localized
to 0 ≤ x ≤ 0.1) of various heights from the Rac-dominated steady-state (Rss, ρss)
as illustrated in the cartoons along each axis. Moving horizontally or down across
panels increases the height of the local perturbation. The panel in the top-left de-
picts the steady-state activity resulting from an initial condition with both Rac and
Rho activity diminished in 0 ≤ x ≤ 0.1, whereas the panel in the bottom-right de-
picts the steady-state activity resulting from an initial condition with both Rac and
Rho activity enriched in 0 ≤ x ≤ 0.1. The heights of the local perturbations were
chosen so that in the first column (respectively row) the initial Rac (respectively
Rho) activity is 0 in the perturbed region. Similarly in the last column (respectively
row) Rac (respectively Rho) activity is maximal in the perturbed region. The Rac-
dominated HSS is Rss = 1.4230, ρss = 0.0764. The Rac perturbation heights are:
−1.4230, −0.0082, 1.4066, 2.8214, and 4.2362. The Rho perturbation heights are:
−0.0764, 4.4212, 8.9188, 13.4164, and 17.9140.
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Supporting Figure 2. Initial condition PDE screen from the coexistence
HSS in a tristable parameter set. As in Supplemental Figure 1, expect the
local perturbations are from the coexistence HSS. In this case, no local perturbation
results in a non-trivial regulatory phenotype. The coexistence HSS is Rss = 1.3655,
ρss = 1.3856. The Rac perturbation heights are: −1.3655, 0.1786, 1.7227, 3.2668,
and 4.8109. The Rho perturbation heights are: −1.3856, 0.1663, 1.7138, 3.2702, and
4.8221.
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Supporting Figure 3. Initial condition PDE screen from the Rho-
dominated HSS in a tristable parameter set. As in Supplemental Figure
1, expect the local perturbations are from the Rho-dominated HSS. In this case, the
Rho-dominated HSS, balanced polarity, and Rho-dominated polarity are possible.
The Rho-dominated HSS is Rss = 0.0740, ρss = 1.4422. The Rac perturbation
heights are: −0.0740, 4.3759, 8.8258, 13.2757, and 17.7256. The Rho perturbation
heights are: −1.4422, −0.0178, 1.4067, 2.8312, and 4.2556.
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LPA Stable LPA Unstable(a) (b)

Supporting Figure 4. Quantification of nested structure in parameter
space. (a) For each tristable parameter set the three HSS may be LPA Stable
(black and yellow points in Figure 6(g)-(i)) or LPA Unstable (red points in Figure
6(g)-(i). The LPA Unstable points appear to be further from the center of mass
(COM) in parameter space than the LPA Stable points, indicating that the LPA
Stable points form the nucleus of parameter space. (b) Distributions of the distance
to the COM of 50000 points sampled from a 5D sphere (grey) of radius 1 surrounded
by a 5D annulus (red) of inner radius 1 and out radius 1.25. Inset: 3D visualization
of points sampled from the 5D sphere (black) and annulus (red).
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