
Bulletin of Mathematical Biology           (2022) 84:40 
https://doi.org/10.1007/s11538-022-00997-6

ORIG INAL ART ICLE

Biophysical Models of PAR Cluster Transport by Cortical
Flow in C. elegans Early Embryogenesis

Cole Zmurchok1,3 ·William R. Holmes1,2,3

Received: 28 June 2021 / Accepted: 18 January 2022
© The Author(s), under exclusive licence to Society for Mathematical Biology 2022

Abstract
The clustering of membrane-bound proteins facilitates their transport by cortical actin
flow in early Caenorhabditis elegans embryo cell polarity. PAR-3 clustering is critical
for this process, yet the biophysical processes that couple protein clusters to cortical
flow remain unknown. We develop a discrete, stochastic agent-based model of pro-
tein clustering and test four hypothetical models for how clusters may interact with
the flow. Results show that the canonical way to assess transport characteristics from
single-particle tracking data used thus far in this area, the Péclet number, is insufficient
to distinguish these hypotheses and that all models can account for transport charac-
teristics quantified by this measure. However, using this model, we demonstrate that
these different cluster–cortex interactions may be distinguished using a different met-
ric, namely the scalar projection of cluster displacement on to the flow displacement
vector. Our results thus provide a testable way to use existing single-particle tracking
data to test how endogenous protein clusters may interact with the cortical flow to
localize during polarity establishment. To facilitate this investigation, we also develop
both improved simulation and semi-analytic methodologies to quantify motion sum-
mary statistics (e.g., Péclet number and scalar projection) for these stochastic models
as a function of biophysical parameters.
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1 Introduction

Clustering of cell surface proteins is an important step in generating cell polarity. The
PAR polarity proteins are a conserved network of proteins that localize asymmetri-
cally in polarized cells that localize to the cell membrane during polarity establishment
where they can be influenced by the flowing actin cortex (Goldstein andMacara 2007).
In theC. elegans single-cell embryo, anterior PARs (aPARs) and posterior PARs local-
ize to the anterior and posterior of the cell to organize the developing embryo. This
organization results from a sperm-derived cue via biochemical interactions and due
to the transport of proteins by the flowing actin cortex (Lang and Munro 2017). The
biophysical interactions between the cortex and membrane-bound proteins that facili-
tate this transport however remain unclear. Here we will use computational modeling
to encode a range of different hypothesized types of protein–cortex interactions and
demonstrate using these models that single-particle tracking data quantified using an
appropriate transport metric be used to distinguish these mechanisms from existing
data modalities.

One of the aPAR proteins, PAR-3, is a scaffold protein that oligomerizes to form
clusters (Harris 2017; Thompson 2021). In turn, PAR-3 clusters form complexes with
other PAR proteins such as PAR-6, the kinase PKC-3 (aPKC), and small GTPase
CDC-42 that are responsible for the coremolecular interactions leading to polarization
(Goehring 2014; Sailer et al. 2015; Lang andMunro 2017). Recent experimental work,
summarized by Munro (2017), reveals a key role for clustering in the polarization
process—PAR-3 is not transported by cortical flow and normal polarization does not
occur without clustering (Dickinson et al. 2017; Rodriguez et al. 2017; Wang et al.
2017). These experimental investigations also revealed that the cortical residence times
of clusters and their persistence of motion both increase with cluster size, raising
the more specific question of how larger clusters are more effectively transported.
Chang and Dickinson (2021) engineered PAR-3 clusters of various sizes and found
that clusters of size three (i.e., consisting of three PAR-3 monomers) or larger are the
minimum size required transport by flow to obtain polarity.

The primary data currently being used to assess protein transport in this area is
single-particle tracking coupled with fluorescent determination of protein cluster size.
With this type of data inmind, protein clustermotion can be viewed as a size-dependent
drift, diffusion process. The question then becomes, how do these clusters interact with
the cortex to produce advection and how is that interaction modulated by cluster size.
One broad hypothesis is that the clusters are subject to a size-dependent drag force
by the underlying flow. Another is that they (un)bind to the cortex with either a size-
dependent or size-independent affinity. New experimental observations by Chang and
Dickinson (2021) suggest that viscous forces on larger clusters are responsible for
their transport and that PAR-3 clusters may not directly bind the actin cortex (since
the clusters do not appear to co-localize with actin). Others note that these hypotheses
remain broadly untested. For example, Gubieda et al. (2020) explain that

It is not known exactly how clustering stabilizes PAR-3 at the membrane, but
we can speculate that the coalescence of multiple membrane-binding domains
could synergize to increase avidity for the membrane (Lemmon 2008), and in
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a similar way, multiple membrane contact sites might increase resistance and
prevent the lateral diffusion of the cluster. In addition, cluster size alonemay also
restrict diffusion or alter the ability of clusters to associate with or be corralled
by features in the membrane or the cortex. More work is needed to dissect the
precise mechanistic basis of flow-sensing by clusters,

and Illukkumbura et al. (2020) suggest that

The precise mechanisms underlying rearward flow can differ and remain unclear
in some systems because of the multi-faceted nature of clustering.

Here, we use mathematical modeling to explore the various facets of clustering to
understand how PAR-3 clusters are transported by the flowing cortex.

To investigate how clusters are transported by the flowing cortex, we developed,
simulated, and analyzed a family of mathematical models for clustering and transport.
These agent-based models (ABM) account for cluster growing and shrinking dynam-
ics, binding and unbinding to the cortex, and a physics-based model for the cluster’s
motion.We study four possible biophysical hypotheses for how the clusters may inter-
act with the cortical flow, encoded as four different models. Where possible, we draw
values for parameters in these models from the literature. Where not, we either con-
strain them fitting the models to Péclet number observation data in Dickinson et al.
(2017) (though we do not have access to the data itself, only figures from the article) or
screen over indeterminable parameter ranges to ensure robustness of conclusions. We
do note that the scope of our investigation is limited to understanding the interaction
between these protein clusters and the cortical flow, and how that generates directed
transport.

In this sense, our question and approach are complementary to many of the other
modeling investigations of PAR polarity in the single-cell C. elegans embryo. A num-
ber of models have been developed to understand properties of the PAR signaling
network. These models are typically partial differential equation models that capture
the diffusion, biochemical reactions, and transport due to flow in the system (Aras et al.
2018; Goehring et al. 2011; Seirin-Lee et al. 2020; Dawes and Iron 2013; Kravtsova
and Dawes 2014; Gross et al. 2018;Wigbers et al. 2020; Geßele et al. 2020). Goehring
et al. (2011) for example found that awave-pinning likemechanism (Marée et al. 2006;
Jilkine et al. 2007;Mori et al. 2008; Jilkine and Edelstein-Keshet 2011; Lin et al. 2012;
Holmes et al. 2012b, a; Mata et al. 2013; Zmurchok and Holmes 2020; Holmes et al.
2017; Holmes and Edelstein-Keshet 2016) may be responsible for stabilization of
the anterior–posterior border. Other models focus on the events that follow polariza-
tion as the embryo further develops (Hubatsch et al. 2019). Dawes and Munro (2011)
focused on the role that PAR-3 oligomerization has in the polarization process, finding
that cluster may generate a bistable switch in the underlying kinetics (thus supporting
polarized patterns) independent of protein cluster transport by flow.While these inves-
tigations focused primarily on understanding PAR signaling kinetics, our work is most
similar to other investigations that seek to understand how proteins that switch state
(i.e., with different diffusion coefficients in each state) can generate protein gradients
(Wu et al. 2018; Bressloff et al. 2019) or investigations into the stochastic motion of
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PomX and PomY clusters in bacterial division (Bergeler and Frey 2018; Kober et al.
2019).

The outcomes of our modeling study are threefold. First, we have developed a
family of mathematical models that codify biophysically reasonable hypotheses for
how the dynamics of these clusters and their potential interactions with the cortex
influence their flow.Wehave also constrained parameters of thesemodels to reasonable
ranges. Second, we have identified a specific analysis metric that may be used to assess
which of these hypotheses is most likely from single-particle tracking data (such
as the data from (Dickinson et al. 2017)) without the need to introduce engineered
forms of these proteins. Third, we have provided new computational and semi-analytic
approaches to calculate motion statistics (Péclet number and scalar projection) that
simplify and speed the analysis of these models. While we cannot conclude which
of the mechanisms described in these models is responsible for cluster transport in
the developing C. elegans embryo, this combination of models and analysis approach
coupled with appropriate data may provide a means to do so.

2 Methods

We model PAR-3 protein clusters using a discrete, stochastic agent-based model
(ABM). Our purpose is to use this modeling framework to encode and test several
hypotheses regarding the biophysical interactions between protein cluster and the
flowing actin cortex. Ultimately, we will compare model predictions to experimen-
tal data from Dickinson et al. (2017). In this section, we outline our computational
approach, describe the different biological hypotheses (Models 1 through 4) encoded
with this approach, and describe how we estimated the model parameters.

We assume that PAR-3 protein clusters (henceforth clusters), illustrated in Fig. 1,
grow via the addition of monomers, and that, being bound to the cell membrane,
can move in two dimensions (panel B). From a force-balance equation, we obtain a
stochastic differential equation (SDE) for the motion of each cluster, with the drift and
diffusion terms that depend explicitly on the cluster size and the specific biological
hypothesis under consideration. Using biophysically realistic parameter ranges, we
simulate cluster dynamics in the agent-based simulation and develop a faster andmore
efficient simulation method based on Monte Carlo (MC) sampling from appropriate
distributions. Finally, we adopt model outputs such as the Péclet Number (as defined
by Dickinson et al. (2017)) and the scalar projection of the cluster’s displacement in
order to compare the transport of our simulated clusters with experimental data.

2.1 Cluster Dynamics Model

We model each cluster as an independent agent described by three random variables:
x(t) ∈ R

2 gives the cluster’s position, n(t) = 1, 2, 3, . . . describes the integer num-
ber of monomers in the cluster, and b(t) ∈ {−1, 1} describes whether the cluster is
unbound (−1) or bound (1) to the cortex at time t . To be clear, we differentiate between
the membrane and the flowing cortex here. All clusters are assumed to be bound to
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Fig. 1 Cluster Transport by Flow, Sample Trajectory, andModel Cartoons.A PAR-3 clusters are transported
by cortical flow (blue arrows) in the C. elegans embryo (adapted from Munro (2017)). Each cluster is
assumed to be bound to the cell membrane and gains or loses monomers with constant rates k+ and k−,
respectively, and diffuses in the membrane. B Sample trajectory of a diffusing cluster with x(0) = (0, 0)
and no coupling to cortical flow. Cluster position and size is shown every �t = 1 s. Since the diffusion
coefficient decreases with cluster size, the cluster appears to move less when it is larger.C–FHypothesized
models for cluster–cortex interactions. In Model 1 (panel C), we assume that clusters are always bound to
the flowing actin cortex and move with the flow velocity. In Model 2 (panel D), we assume that clusters
stochastically bind and unbind to the cortex with size-independent rates k1 and k−1, while in Model 3
(panel E), we assume that clusters bind and unbind with size-dependent rates k1(n) and k−1(n). In Model
4 (panel F), we assume that a drag force F generated by the flowing actin cortex opposes the drag that the
cluster experiences from the environment and cell membrane (Color figure online)

the cell membrane at all times since those that are not would not be observed using
the experimental quantification motivating this article (Dickinson et al. 2017). From
here on, (un)bound refers to the interaction between the clusters and the cortex. The
form of this interaction is precisely what we are investigating here.

Size Dynamics To describe the change in cluster sizes we adopt a simplified version
of the simple polymerization model (Edelstein-Keshet and Ermentrout 1998) used to
model the polymerization of actin filaments (also described in Chapter 4.1 of Bressloff
(2014)). Monomers are added to the cluster with rate k+ and are removed with rate
k−. The probability pn(t) that the cluster is of size n at time t is described by:

dpn(t)

dt
= k− pn+1(t) − (k− + k+)pn(t) + k+ pn−1(t), (2.1)

dp1(t)

dt
= k− p2(t) − k+ p1(t), (2.2)

with the normalization condition
∑∞

n=1 pn(t) = 1. A stationary solution satisfies

k− pn+1 − (k− + k+)pn + k+ pn−1 = 0, b > 1, k− p2 = k+ p1, (2.3)

123



   40 Page 6 of 29 C. Zmurchok, W. R. Holmes

motivating the ansatz pn = Cλn . This results in λ = 0, 1, or λ = k+/k−. To satisfy the
normalization conditionwith nontrivial cluster dynamics, wemust have λ = k+/k− <

1. In this case C = (1− k+/k−)/(k+/k−). Thus, the steady-state clustering dynamics
satisfy

pn =
(

1 − k+
k−

) (
k+
k−

)n−1

. (2.4)

Note that we have assumed that the concentration of monomers is unlimited in this
scenario and have neglected higher order growth and decay events (e.g., the addition
and subtraction of oligomers of any size). This simplifying assumption leads to a more
tractable model.

BindingDynamicsWe assume that the clusters can bind (b(t) = 1) and unbind (b(t) =
−1) to the cortexwith reaction rates k1 and k−1, respectively.Depending on the specific
biophysical hypothesis for how the cluster interacts with the flowing actin cortex, we
may consider the limit where k1 → ∞ and k−1 → 0, or allow the binding and
unbinding rates to depend on the cluster size n(t). These assumptions will be clarified
in the next section.

With qb(t) defined as the probability that the cluster is bound to the actin cortex at
time t , we obtain the following master equation:

dq1(t)

dt
= k1q−1(t) − k−1q1(t), (2.5)

dq−1(t)

dt
= −k1q−1(t) + k−1q1(t), (2.6)

with stationary solution

q1 = k1
k1 + k−1

, and q−1 = 1 − p1 = k−1

k1 + k−1
. (2.7)

Position DynamicsNewton’s equations for the cluster, neglecting inertial forces, give

0 = −(γ + γm)ẋ(t) + F + ση(t), (2.8)

where x(t) = (x1(t), x2(t)) ∈ R
2 is the stochastic position of the cluster at time

t , F = (F1, F2) is an external force (e.g., from the flowing actin cortex), γ and
γm are drag coefficients, σ is the noise level, and η(t) = (η1(t), η2(t)) is Gaussian
white noise. There are two potential sources of drag on the cluster: drag on the cluster
from the membrane-binding site with drag coefficient γm , and drag from the cellular
environment with drag coefficient γ . For simplicity, we assume Stokes’ Law:

γ = 6πµn0n(t), and γm = 6πµmhm, (2.9)

where the cluster’s radius is assumed to be linearly proportional to the number of
monomers n(t) in the cluster (n0 being the size of eachmonomer) andµ is the viscosity.
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We also assume that the membrane-binding site drag can also be described using
Stokes’ Law, with radius given by the membrane height hm, and membrane viscosity
µm. This drag does not depend on cluster size since it is assumed the cluster is anchored
to the membrane by a separate domain. Note that we adopt this simple model of drag
given the lack of specific structural data on PAR-3 complexes (to our knowledge).
We use Stokes’ Law instead of more refined models such as the Saffman–Delbrück
relation for simplicity and since other data suggests that a Stokes-like relation fits data
best (Gambin et al. 2006). More discussion of these drag coefficients can be found
in the methods section discussing parameters. From Eq. (2.8), we obtain a stochastic
differential equation (SDE) for the position of the cluster:

dx(t)

dt
= V n,b + √

2Dnη(t), (2.10)

where the drift coefficient V n,b depends on the cluster’s size n(t) and bound state b(t)
through the external force F and size-dependent viscous drag:

V n,b = F
γ + γm

, (2.11)

and the diffusion coefficient Dn depends on the cluster’s size n(t) through the size-
dependent viscous drag:

Dn = 1

2

(
σ

γ + γm

)

. (2.12)

Note that the diffusion and drag coefficients are jointly defined to satisfy the relevant
fluctuation–dissipation relation.

The full cluster dynamics can then be described through a chemical master equation
for the probability, P(x, n, b, t), that a cluster is at location x, is of size n, and has
binding state b at time t :

∂P(x, n, b, t)

∂t
= −V n,b · ∇P(x, n, b, t) + Dn∇2P(x, n, b, t)

+ kbP(x, n,−b, t) − k−b P(x, n, b, t)

+ k+P(x, n − 1, b, t) − (k+ + k−)P(x, n, b, t) + k−P(x, n + 1, b, t).
(2.13)

We provide this description for those who are familiar with such processes. However,
in practice we either directly simulate cluster dynamics or approximate their statistical
properties in some other way and do not directly work with the master equation.
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2.2 Models 1–4: Interaction with the Cortical Flow

We study four possible biophysical hypotheses for how the cluster may interact with
the cortical flow to give rise to cluster transport. Our list is not exhaustive but seeks to
capture the main ideas of how such clustering may enhance transport. We assume that
the clusters remain bound to the cell membrane throughout the transport process. To
organize these hypotheses, we developed a series of four models. These models are
illustrated in Fig. 1c–f. Note that the flowing actin cortex is described by a velocity
field vc.

1. Model 1: Directly Coupled We assume that the cluster is directly coupled to
the flowing cortex, so that the cluster’s velocity (in the absence of noise) exactly
matches the cortical velocity, vc. In this case, the external force imposed by the
cortex on the cluster is F = (γ + γm)vc so the drift term is V n,b = vc for all n
and b.

2. Model 2: Binding/Unbinding We assume that the cluster can bind and unbind to
the flowing cortex with reaction rates k1 and k−1, respectively, and that the cluster
moves with the cortex velocity when bound. In this case, the external force imposed
by the cluster is F = (γ +γm)vc

b+1
2 . In other words, the drift coefficient switches

between 0 and vc as the cluster binds and unbinds from the cortex.
3. Model 3: Size-Dependent Binding/Unbinding We make the same assumptions

as in Model 2; however, we assume that the cluster size can influence the binding
kinetics. This assumption seeks to model the hypothesis that larger clusters may
have multiple binding domains that could synergize coupling to the flowing cortex
(e.g., increasing the avidity for the cortex). Thus, we assume that the binding rate
increases linearly with cluster size:

k1(n) = k01 + k11 · (n − 1). (2.14)

This effectively ensures that larger clusters remain bound to the flowing cortex for
a longer amount of time. Multiple functional forms could be envisioned for this
relation or alternatively the size dependence could affect the off rate. We use this
size dependence for simplicity to compare against these other different hypotheses.

4. Model 4: Fluid Drag Our fourth hypothesis is substantively different from the
binding/unbinding models in that we assume that the flowing cortex exerts a drag
force on the cluster that is opposed by the drag from the membrane and that there
is no overall drag in the system. Thus, instead of Eq. (2.8), we have

0 = −γm ẋ − γc(ẋ − vc) + ση(t), (2.15)

where γc = 6πµn0n(t) is defined analogously to γ . Under these assumptions, the
drift term directly depends on the cluster size n:

V n,b = γc

γm + γc
vc, (2.16)
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and the diffusion coefficient is:

Dn = 1

2

(
σ

γc + γm

)

. (2.17)

Note that this model assumes that the membrane is stationary and does not flow
with the cortex.

There are similarities and differences between thesemodels.Model 1 can be thought
of as taking a limit of model 2 when k1 → ∞ and k−1 → 0, so that the cluster
velocity always matches the cortical velocity whereas in model 2, we expect the
cluster’s velocity to match the cortex velocity for a proportion, p1 = k1

k1+k−1
, of the

time it is moving. In models 1–3, the drift coefficient is size-independent, and size
dependence only enters Model 3 through (un)binding rates. This is different from
model 4, where both the drift and diffusion coefficients depend on cluster size—
Eq. (2.16) specifies that larger clusters are more affected by the flowing cortex since
Vn,b is a saturating function in n. Note that we consider two possible sources of
size-dependent effects in our models: (1) through the diffusion coefficient Dn and
(2) through the binding/unbinding dynamics (or fluid drag force) that give rise to the
drift coefficient Vn,b. This will be important because, as we will see, the size effects
on net drift rate can markedly distinguish these hypotheses while the size-dependent
diffusivities are essentially the same across models.

2.3 Quantifying Cluster Transport

The primary data in this area quantifies cluster sizes (via fluorescence brightness) and
tracks cluster motions as a function of rough size (Dickinson et al. 2017). While we do
not have access to this data, we will analyze these models with quantitative measures
that could be applied to this type of data.

Dickinson et al. (2017) quantified the size-dependent cluster transport by calculating
an apparent Péclet number. To compare our simulation results with experimental data,
we adopt the same definition:

For each particle at each time step, we calculated a vector for the motion due
to advection (which is equal to the local cortical flow…) and a vector for the
motion due to diffusion (which we estimate as the total particle displacement
minus the advective motion). The apparent Péclet number for that time step is
simply the ratio of the lengths of the advection vector and the diffusion vector.

We illustrate the definition of the Péclet number in Fig. 2a. Define the cluster’s dis-
placement over the time step of length �t as r = x(t + �t) − x(t). The motion due
to cortical flow in this time step is v = vc�t and so the motion due to diffusion is
d = r − v. The Péclet number for that time step is defined as the ratio of the lengths
of these vectors:

Pe = ‖v‖
‖d‖ , (2.18)
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A

B 

Fig. 2 A Metrics used to quantify cluster transport. Each cluster has displacement (in time �t) defined as
r = x(t + �t) − x(t) that can be decomposed into an advective component from cortical flow v = vc�t
and a diffusive component d = r − v. The Péclet number, Pe, is defined as the ratio of the lengths of
the advective component and the diffusive component. The scalar projection Sp, is given by the scalar
projection of the displacement onto the advective component. B Probability densities of the x-component
of cluster displacements, r1 (see panel A), obtained from the simulations of the agent-based model (ABM;
histograms) match the kernel density estimates of distributions obtained fromMonte Carlo (MC) sampling
(solid lines) from quasi-steady distributions [dashed lines; Eqs. (2.25)–(2.27)]. The distribution for clusters
of size n = 4 in both bound and unbound states is shown in the left panel whereas the distributions in the
bound and unbound states are shown separately in the right panel. Vertical lines at 0 and−0.1 illustrate how
unbound clusters have mean displacement of 0 while bound clusters have mean displacement equal to the
cortical flow speed (0.1 µm/s; we assume that flow is always in the negative x-direction). 100 cells were
simulated until time T = 500 s, i.e., 50,000 total displacements) from clusters of size n = 4 using MC
sampling while 10000 cells were simulated until time T = 500 s using the ABM with σ = 0.01, µ = 0.1,
k1 = 0.1, k−1 = 1. Supplemental Figures 2–5 illustrate how the displacement distributions obtained from
the ABM and MC sampling methods agree over all cluster sizes (Color figure online)

provided that d �= 0. Results below will show that Péclet number is ineffective at
distinguishing these models. Thus we introduce another metric of cluster transport
that compare the cluster’s motion relative to the flow (as opposed to the cluster’s
motion relative to the noise). For this second metric, we calculate the scalar projection
of the cluster’s displacement r onto the cortical flow v:

Sp = r · v

‖v‖ , (2.19)

provided that v �= 0.
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2.4 Stochastic SimulationMethods

To numerically simulate the cluster dynamics, we use two complementary approaches.
The first is to use a “naive” stochastic simulation algorithm as inChapter 1 of Erban and
Chapman (2019) to generate a stochastic trajectory of the cluster dynamics (position,
growth/decay, and binding/unbinding). We refer to this method as the “agent-based
model” (ABM). The second method is more efficient and is based on Monte Carlo
(MC) sampling. In the MC sampling method we do not track the cluster’s position
over time, but instead generate many cluster displacements r by sampling from the
appropriate statistical distributions. In this section, we describe both approaches.

2.4.1 Agent-Based Model

We simulate N non-interacting clusters from time t = 0 s to t = T = 500 s approxi-
mating the 8minutes during which theC. elegans embryo is in the establishment phase
and the PAR proteins are clustered (Dickinson et al. 2017).We initialize each cluster at
x(0) = (0, 0) with n(0) ∼ U (1, 10) (randomly sampled from a uniform distribution
of integers between 1 and 10), and b(0) = −1. At each time step �tABM = 0.001 s,
we determine Vn,b and Dn from Eqs. (2.11) and (2.12) (or (2.16) and (2.17) in Model
4). Next, we update the position of the cluster:

x(t + �tABM) = x(t) + V n,b�tABM + √
2Dn�tABMξ , (2.20)

where ξ = (ξ1, ξ2) has components ξi that are independent samples obtained from a
standard normal distribution. We assume that �tABM is sufficiently small such that at
most one reaction occurs (adding or subtracting a monomer, binding or unbinding to
the cortex) to occur. To determine which reaction occurs, we first label the reactions:
Rk, k = 1, . . . , 4 where k = 1 corresponds to adding a monomer, k = 2 to subtracting
a monomer, k = 3 to binding to the cortex, and k = 4 to unbinding from the cortex.
Each reaction has probability pk given by the product of the reaction rate and the time
step�tABM: p1 = k+�tABM, p2 = k−�tABM, p3 = k1�tABM, and p4 = k−1�tABM.
To determine which reaction occurs, we draw a random number r ∼ U (0, 1) and find
k such that

k−1∑

j=1

p j < r <

k∑

j=1

p j . (2.21)

If no k satisfies this condition, then no reaction occurs in the time step. We then
determine n(t + �tABM) and b(t + �tABM) as follows:

1. If R1 occurs, then n(t + �tABM) = n(t) + 1 and b(t + �tABM) = b(t).
2. If R2 occurs, then n(t+�tABM) = n(t)−1 (only if n(t) > 1) and b(t+�tABM) =

b(t).
3. If R3 occurs, then n(t + �tABM) = n(t) and b(t + �tABM) = 1.
4. If R4 occurs, then n(t + �tABM) = n(t) and b(t + �tABM) = −1.
5. If no reaction occurs, then n(t + �tABM) = n(t) and b(t + �tABM) = b(t).
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We save the data for analysis every �t = 1 s. The model is simulated with a smaller
time step, however 1 s matches the imaging frequency of the motivating data and so
we use it for analysis.

To ensure that the numerical implementation of the ABM is correct, we simulated
N = 1000 clusters with Dn = 0.001 for all n, and with or without drift (V n,b = vc
or 0). We then calculated the mean-square displacement (MSD), the time spent as a
cluster of each size, and the cluster size distribution at the end of the simulation. Our
stochastic simulations match (Supplemental Figure 1) standard theory for MSD for
particles moving due to diffusion with or without drift, the expected time spent as a
cluster of size n, (1/k+ for clusters of size 1 and 1/(k+ + k−) for clusters of all other
sizes), and the steady-state cluster size distribution predicted by Eq. (2.4).

2.4.2 Monte Carlo Sampling

Instead of simulating each cluster until time T using the computationally expensive
ABM,we developed amore efficientMonte Carlo (MC) samplingmethod. In practice,
we only quantify cluster transport through the Péclet number and the scalar projec-
tion. Since these quantities do not depend on the cluster position but only the cluster
displacements r (Fig. 2a) it is sufficient to determine the displacement distributions
to determine the transport characteristics.

As motivation for this approach, consider clusters of size n. The motion of these
clusters is characterized by a diffusion coefficient Dn and a drift coefficient Vn,b that
also depends on the binding state b. Rewriting the SDE (2.10) in differential form

x(t + dt) − x(t) = V n,bdt + √
2Dndtξ , (2.22)

where ξ has independent standard normally distributed components, reveals that the
displacements of clusters of size n in binding state b over time�t (denoted by rn,b) are
normally distributed with mean V n,b�t and covariance

√
2Dn�t I2 (I2 is the 2-by-2

identity matrix):

rn,b ∼ N (V n,b�t,
√
2Dn�t I2). (2.23)

Overall, we exploit the fact that the SDE (2.10) relates the change in position of the
cluster (displacement) to the drift and diffusion coefficients. Note that for models 1
and 4 the drift coefficient, V n,b, does not depend on the binding state b. In order
to simulate a cluster of size n for until time T using a time step of �t , we need to
generate T = T /�t displacements, assuming that T is an integer. Thus, to use the
MC sampling method in models 1 and 4, we draw T samples from the appropriate
distribution:

rn ∼
{
N (vc�t,

√
2Dn�t I2), Model 1,

N (
γc

γm+γc
vc�t,

√
2Dn�t I2), Model 4.

(2.24)

For models 2 and 3, however, we need to further simplify by averaging over the bound
and unbound states. Assuming that the binding and unbinding process is in quasi-
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equilibrium, then using the stationary solution given by (2.7), we find that clusters of
size n spend p1 proportion of time bound to the cortex and p−1 proportion of time
unbound. Note that these probabilities depend on n in model 3 since k1 is a function
of n, but are constant with respect to n in model 2. Thus, to simulate a cluster of size
n for T time steps, we first determine for how many of these time steps the cluster
is expected to be bound and how many unbound. We assume that each time step is
independent (and that T is an integer), and therefore find the number of time steps in
the bound state to be binomially distributed with T trials and probability p1:

M1 ∼ B(T , p1). (2.25)

The number of time steps spent in the unbound state, is easily calculated as M−1 =
T − M1. Thus, to simulate a cluster for M time steps in model 2 or 3, we draw M1
samples for the displacements while bound:

rn,1 ∼ N (vc�t,
√
2Dn�t I2), (2.26)

and then draw M−1 samples for the displacements while unbound:

rn,−1 ∼ N (0,
√
2Dn�t I2). (2.27)

Note that in the MC sampling method we ignore the procession of time—we collect
these displacements in a set. A true trajectory would have an ordered list of displace-
ments corresponding to the changes in the cluster’s position, size, and binding state
over time.

We validated the accuracy of the Monte Carlo sampling approach by comparing
the displacement distributions obtained throughABM simulations with those obtained
through MC sampling, and comparing both of these distributions to their analytical
forms (the probability density function for a multivariate normal distribution with
given mean and covariance). A sample of this comparison is shown in Fig. 2b for
clusters of size n = 4. We show the probability densities of the x-component of the
cluster displacements obtained from ABM simulations as a normalized histogram,
kernel density estimates obtained fromMC sampling (solid lines), and exact forms of
the quasi-steady distributions (dashed lines). In the left panel, the bound and unbound
displacements are aggregated while in the right panel the displacement distributions
for the bound and unbound state are shown separately. Supplemental Figures 2–5
show the agreement between the displacement distributions obtained between ABM
simulations and MC sampling method across all cluster sizes.

One advantage of the MC sampling method over the ABM is that large clusters are
relatively rare. Given the biologically relevant parameter values for k+ and k−, the
probability that a cluster is a large size (e.g., 8, 9, or 10) is very small (see Supplemental
Figure 1C). Thus, in order to obtain reasonable statistics for the transport of clusters
when they are large, it is necessary to run the ABM for a large number of simulations
for sufficiently long time to collect enough transport data for these large clusters. In
the MC sampling method, however, it is straightforward to sample a sufficient number
of displacements for each size and determine the expected displacement distributions.
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Since we are only interested in broad transport metrics such as the Péclet number and
scalar projection, we use the MC sampling method for the remainder of the paper.

2.5 Parameter Estimation

We estimated model parameters from the literature wherever possible, and performed
a sweep over ranges of key parameters in order to assess the transport of clusters. In
this section, we describe the model parameters, parameter sweep, and summarize the
model and output variables, parameters used in simulations, and numerical parameters
in Table 1.

2.5.1 Parameters from the Literature

We use values obtained from the literature for several of the model parameters. We use
micrometers (µm) for space, seconds (s) for time, and pico-Newtons (pN) for force.
PAR-3 monomers are approximately 5 nm across (see Figure 2 of Zhang et al. (2013)
and Figure 1 of Harris (2017)), so we set n0 = 0.005 µm. We assume that the cell
membrane is homogeneous and is 10nm thick [hm = 0.01 µm, (Bayer 1991)]. We
use the two-dimensional membrane viscosity estimates (0.003 pN·s/µm) provided by
Shi et al. (2018); Cohen and Shi (2019), but convert this viscosity to the appropriate
dimensions (a 3D viscosity), by dividing by the cell membrane height: µm = 0.3
pN·s/µm2. The cortical flow speed has been measured in C. elegans embryos by
Munro et al. (2004) and by Rodriguez et al. (2017). Using the flow speed value of
7.66± 1.0µm/min (Rodriguez et al. 2017), we set vc1 = 0.1µm/s (7.66/60 ≈ 0.13).
We also assume that the flow direction is always in the negative x-direction, and thus
set vc = (−vc1, 0). We justify this assumption by noting that we are only interested
in how the clusters are affected by flow instead of the overall transport of clusters in
the embryo. Finally, we set k+ = 0.05 1/s and k− = 1.0 1/s so that the distribution
of cluster sizes qualitatively matches the distribution from Figure 3B in Dickinson
et al. (2017) during the establishment phase. Recall that steady-state cluster sizes
are exponentially distributed, see Eq. (2.4) (Supplemental Figure 1C). We also find
that the expected time in each size state is on the order of seconds or tens of seconds
(Supplemental Figure 1B) with these parameter values. Since we are only interested in
how cluster size affects the transport of the clusters in the sense of local displacements
instead of overall cluster distribution in the embryo (and we do not explicitly simulate
protein cluster size in the MC sampling method), the precise values of k+ and k−
are less important with one caveat. If monomer addition and subtraction were faster
than the 1 second analysis time scale we use, some of the output quantification and
analyses here may be affected. However, this would affect the interpretation of data
as well. Thus since we do not have direct data on the timescale of monomer addition
and subtraction, we assume the rates are slower than the 1 s observation timescale.

2.5.2 Parameter Sweep

We were unable to estimate the remaining parameters from the literature. In order to
constrain the noise level σ , the viscosity µ, the cortex unbinding rate k−1, the cortex
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binding rate k1, and the cortex size-dependent binding rate slope, we performed a
parameter sweep. Based on Péclet number quantification fromDickinson et al. (2017),
we assume the true mean Péclet number as a function of cluster size varies linearly
between 1 and 2 for clusters of sizes 1 through 10 as a target for our parameter sweep.
We sweep over parameter sets and only retain those that approximately satisfy this
condition.

Noise Level and Viscosity To start, we used model 1 as a test and sampled 500 dis-
placements of each cluster size from 100 cells with σ ranging from 0.01 to 0.04 and
µ ranging from 0.1 to 0.4. Results (Supplemental Figure 7) show that increasing the
noise level increases the effect of diffusion (reducing the Péclet number) and increas-
ing the viscosity reduces the effect of diffusion (increasing the Péclet number). We
set σ = 0.01 since this gave the best results compared to our criteria when µ = 0.1.
However, since we wish to account for any heterogeneity that may be present, we
allowed µ to vary in a range. We chose µ ∈ [0.05, 0.2].

As a final check for biological realism, we estimated the diffusion length scale for
freely diffusing clusters with σ = 0.01 andµ ∈ [0.05, 0.2]. The diffusion length scale
for clusters of size n is given by L = √

DnT µm over time T = 500 s, and ranges
from 0.6 to 2.6µm (Supplemental Figure 6) with these parameter values. These length
scales provide an estimate that the clusters could travel only a few micrometers by
diffusion alone, reasonable for membrane-diffusing particles of this size. Moreover,
in the fluid drag model (model 4), we found that increasing the viscosity beyond
µ = 0.20 gives unreasonably large Péclet numbers (Supplemental Figure 10).

Binding and Unbinding Rates We do not have sufficient data to parameterize the
timescale of both cortical binding and unbinding. Thus, we chose to fix the unbinding
rate, k−1 = 1 1/s, and seek k1 such that the model simulations fit the data. Note
that an alternate choice of k−1 and k1 may work equally well; however, these kinetic
rates could be measured experimentally. Based on parameter screens, we find that
k1 ∈ [0.1, 10] 1/s produces mean Péclet number that vary between 1 and 2 as a
function of size (Supplemental Figure 8). In model 3, the cortical binding rate depends
on two parameters: k01 and k11 [Eq. (2.14)]. To fit the model to data, we chose k11 to
vary between 0 and 10. With this choice, we were able to reproduce a range of size-
dependent effects, but fixed k01 = 5 to reduce the number of parameters being varied
in any given simulation. With k01 = 5 (fourth row, Supplemental Figure 9), we found
that the mean Péclet number across cluster sizes matched our criteria to increase from
1 and 2 as the cluster sizes increase.

2.5.3 Parameters for Simulations

Rather than choose a single parameter set to analyze, we instead choose 100 parameter
sets from the ranges listed above. In one sense, this allows us to generalize our analysis
to the relevant region of parameter space. In another, each of these “parameter sets” can
be thought of as an in silico cell and by doing this, we account for likely heterogeneity
that would be naturally present. In summary, we fixed σ = 0.01, k−1 = 1, and
allowed µ, k1, and k11 to vary over a range for our simulations. Using these parameter
ranges, we generated N = 100 parameter sets uniformly sampling from the ranges:
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µ ∼ U (0.05, 0.2), k1 ∼ U (0.1, 10) (k01 = 5 is fixed in Model 3), and k11 ∼ U (0, 10).
We think of these N = 100 parameter sets as representing 100 different embryos
to be measured, and thus report our model outputs (mean Péclet number and scalar
projection) as mean values plus or minus standard error of the mean in Fig. 4 and in
Supplemental Figures 7–10. These parameters are summarized in Table 1.

3 Results

3.1 All Models Match Experimentally Observed Trend in Péclet Number

In order to constrain the parameter space to biologically realistic values, we first pre-
formed a parameter sweep for Models 1–4 (Sect. 2.5) to determine parameter ranges
that are consistent with the cluster size-dependent Péclet numbers observed in Dick-
inson et al. (2017). Using these parameter ranges, we generated N = 100 unique
parameter sets, corresponding to 100 cells. Next, using the MC sampling method,
we obtained 500 displacements for each cluster size 1–12 for each parameter set, and
calculated the Péclet number for each displacement. To compare the resulting displace-
ment distributions with protein cluster transport observed in experiments (Dickinson
et al. 2017), we binned the clusters by size, and plotted the Péclet number distributions
for clusters of size 1–3, 4–6, 7–9, and 10–12 using boxplots in Fig. 3.

The Péclet number distributions for models 1–4 all agree with experimental data
(since parameters were calibrated to this data). First, note that the Péclet number
increases with cluster size across all models and across a wide range of parameters.
This confirms the main hypotheses from the literature, namely that there exists a size-
dependent effect ensuring that larger protein clusters are more easily transported by
cortical flow. Moreover, we estimated the mean Péclet number obtained from experi-
mental observations from Figure 6H of Dickinson et al. (2017) and show these data in
Fig. 3 as black points connected with a dotted line. Our simulated clusters (boxplots)
match this observed linear increase in mean Péclet data.

The linear increase in mean Péclet number critically depends on the fact that the
diffusion coefficient depends on cluster size through the drag coefficient γ (or γc
in model 4). Recall that as clusters grow in size they experience more drag from
the environment and thus have a smaller overall diffusion coefficient Dn (Eq. 2.12).
To determine the role that this size-dependent diffusion contributes to the observed
increase in Péclet number,we repeated the simulation as in Fig. 3 but fixed the diffusion
coefficient Dn = D3 for all cluster sizes n. In this case, the distributions of Péclet
number and across models do not appear to increase with cluster size. To demonstrate
this, we plotted the mean Péclet number versus cluster size in Fig. 4 with error bars
illustrating the standard error of the mean. Figure 4a replicates Fig. 3 with a different
plotting convention for comparison. Figure 4c demonstrates that when size-dependent
diffusion is removed, the mean Péclet number does not increase when the diffusion
coefficient is fixed. We thus conclude that the Péclet number effect is driven by size-
dependent diffusion.

In conclusion, Models 1–4 are all consistent with the Péclet number observations
from Dickinson et al. (2017) for a range of parameters. Unfortunately, this type of

123



Biophysical Models of PAR Cluster Transport by Cortical Flow in… Page 19 of 29    40 

A B C D

Fig. 3 All models agree with observed trend in Péclet number in experimental data (panels A–D for models
1–4, respectively). Black points show mean Péclet numbers estimated from experimental observations of
cluster transport fromFigure 6HofDickinson et al. (2017),while boxplots illustrate simulatedPéclet number
distributions obtained fromMC sampling when cluster displacements are grouped into four size categories.
Size-dependent diffusion, Eq. (2.12), is required to obtain an increase in mean Péclet number with cluster
size. See Supplemental Figure 11 for Péclet number distributions when diffusion is size-independent. We
simulated N = 100 cells with unique parameters and sampled 500 displacements for each cluster size for
each model. Parameters: σ = 0.01, µ ∼ U (0.05, 0.2), k1 ∼ U (0.1, 10) (k1 = 5 is fixed in Model 3),
k−1 = 1, and k11 ∼ U (0, 10) (Color figure online)

quantification cannot alone be used to distinguish these models. The central reason
for this is that there are two size dependencies in these models: (1) size-dependent
diffusion and (2) size-dependent drift. The size dependence of drift varies across
models. However Péclet number quantifies that drift relative to diffusion, and the size
dependence of diffusion, which is the same for all models, appears to overwhelm this
metric. You cannot see the signal through the noise with this metric. We address this
limitation in the next section.

3.2 DistinguishingModels 1–4

Given that the observed cluster transport characteristics (Péclet number) match
between all of the models considered here (Fig. 4a, we sought a metric that could
distinguish the models. Motivated by the observation that the observed change in
Péclet number is driven by size-dependent diffusion, we propose a different metric,
the scalar projection of the cluster displacement on to local cortical flow displacement
over the length of time�t .We illustrate how this metric is calculated in Fig. 2a. Unlike
the Péclet number, the scalar projection of the displacement on to the cortical flow is
not dominated by the diffusive process in the cluster transport. Instead of comparing
drift to diffusion, it compares drift to the cortical flow directly, which should be exper-
imentally accessible from data since Dickinson et al. (2017) and others use particle
image velocimetry to determine the cortical flow velocity at each location in the cell.

We plot the mean scalar projection (and standard error of the mean) for the four
models across cluster sizes in Fig. 4b. Unlike the Péclet number, the mean scalar
projection separates into four distinct size-dependent curves. This suggests that it
may be possible to distinguish the models by using this metric. We observe that the
scalar projection for model 1 is constant with cluster size and that the standard error
decreases with cluster size. This agrees with our intuition. In model 1, the clusters
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A

C

B

D 

Fig. 4 Comparison of models via Péclet number (left column) and scalar projection (right column) for
N = 100 simulated cells with size-dependent (top row) and size-independent diffusion (bottom row).
Colors distinguish models; lines with error bars and shaded area show mean and standard error of the mean
for each output (Péclet number and scalar projection) obtained through MC sampling as in Fig. 3. A and
C Size-dependent diffusion is necessary to observe an approximately linear increase in Péclet number as
a function of cluster size. Distinguishing models 1 through 4 based on Péclet number does not appear
possible given the overlapping measurements. B and D: Scalar projection of the cluster displacement onto
the cortical flow displacement can be used to distinguish the models. Model 1: the scalar projection matches
the flow;Model 2: the scalar projection is reduced by the average fraction of time spent bound to the flowing
cortex but does not depend on cluster size; Model 3: the scalar projection saturates to the scalar projections
in Model 1 from Model 2; and Model 4: the scalar projection saturates to a much lower value than in
Model 3 (Color figure online)

always move with the cortical velocity, so their scalar projection should be equal to
the cortical flow speed (0.1). Larger clusters are less affected by noise compared to
small clusters since they experience more drag from the environment, so we expect
the estimate of the mean scalar projection to be more precise. In model 2, the scalar
projection is independent of cluster size and takes on values less than the cortical
flow speed. This is reasonable since in this model, the clusters stochastically bind and
unbind to the cortex and only drift with the cortex when bound. In model 3 and 4, we
observe a size-dependent saturation in the mean scalar projection. This dependence
is qualitatively different between the two models. In model 3, the scalar projection
saturates fairly quickly near the cortical velocity since a sufficient number of binding
sites leads to a large fraction of time spent bound. In model 4, on the other hand,
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the drag cross section of the cluster grows more slowly with size and thus the scalar
projection does not reach the cortical velocity for even the largest sizes considered.
Finally, note that the scalar projection is less sensitive to the size-dependent diffusion
coefficient (compare Fig. 4b and d).

In conclusion, the scalar projection appears to have more power to distinguish
these hypotheses than the Péclet number. The essential reason is that the Péclet number
compares drift to diffusion and allmodels have a substantial and similar size-dependent
diffusion. The scalar projection on the other hand compares drift to cortical flow,which
circumvents this issue and focuses on how the interaction between clusters and the
cortex influence drift.

3.3 Estimating Scalar Projection Across Cluster Size and Parameter Space

To further evaluate how the mean scalar projection depends on cluster size, model,
and parameter choices, we analytically approximate the mean scalar projection to
simplify its characterization as a function of parameters. To do so, we exploited the
fact that the cluster displacements are random variables following a distribution given
by Eq. (2.23), and the fact that the scalar projection is simply a function of that random
variable. Recall that the cluster displacements of size n and binding state b are random
variables that are normally distributed according to

rn,b ∼ N (V n,b�t,
√
2Dn�t I2), (3.1)

and that the scalar projection for these cluster displacements is therefore

Spn,b = rn,b · vc�t

‖vc�t‖ . (3.2)

In models 1 and 4 where binding and unbinding to the cortex is not considered, it
is straightforward to determine an expression for the mean scalar projection since
the mean of the normal distribution is easily found as vc�t (model 1) or γc

γc+γm
vc�t

(model 4):

〈Spn〉 = 〈rn〉 · vc�t

‖vc�t‖ =
{

‖vc‖�t, Model 1,
γc

γc+γm
‖vc‖�t, Model 4.

(3.3)

Here, 〈−〉 indicates the expectation of the random variable. Note that the fraction
γc

γc+γm
depends on the cluster size n through the drag coefficient γc.

To find an expression for the mean scalar projection for clusters of size n in models
2 and 3, it is necessary to also average over the binding and unbinding process. Recall
that the clusters in model 2 and 3 move with the cortical velocity when bound and
otherwise freely diffuse, and that the binding and unbinding rates are constant inmodel
2 but dependon the cluster sizen inmodel 3.Using a quasi-steady approximation (valid
for sufficiently fast binding and unbinding rates or for sufficiently long simulation time
T ), we find that q1 = k1

k1+k−1
is the fraction of time spent bound, and q−1 = 1 − q1

123



   40 Page 22 of 29 C. Zmurchok, W. R. Holmes

is the fraction of time spent unbound (see Sect. 2.1). Thus, to find the expected scalar
projection for clusters of size n, we first average over the bound and unbound states:

〈rn〉 := 〈rn,b〉b = 〈V n,b〉b =
∑

b=−1,1

(

vc
b + 1

2
�t

)

qb = vc�tq1. (3.4)

This matches our intuition: the average cluster displacement over a time �t should be
equal to the displacement generated by the flowing cortex over that time interval, �t ,
scaled by the amount of time spent bound to the cortex, q1. Thus, for models 2 and 3,
we find that

〈Spn〉 = q1‖vc‖�t, (3.5)

where the fraction of time spent bound, q1 is fixed for model 2 and depends on cluster
size for model 3.

These theoretical estimates for the mean scalar projection agree with the mean
scalar projection obtained from MC sampling. In Fig. 5a, we overlaid the theoretical
estimates (dashed lines) on the mean scalar projection obtained from MC sampling
(an exact copy of Fig. 4b). In order to make this comparison, we first calculated the
theoretical estimate of the mean scalar projection for each parameter set used in the
MC sampling, and then took the average over the parameter sets.We observe excellent
agreement between this theoretical estimate and the simulated cells. This analytical
approach will likely simplify analysis of data using this scalar projection approach
since it allows for a more direct observation of how parameters, many of which are
not directly estimable, would influence this metric.

The advantage of the theoretical estimates of the mean scalar projection is that
we now can understand how the scalar projection depends on the model parameters
without relying on simulations. In Fig. 5b–e, we show heat maps of the mean scalar
projection estimated by theory across cluster sizes and parameter spaces. Each panel
illustrates the mean scalar projection for a different model, and the dashed lines corre-
spond to the average parameter value used in the N = 100 parameter sets in the MC
sampling method. We find that the mean scalar projection is constant and matches the
cortical flow speed regardless of model parameters in model 1 (panel B); increases
with the ratio k1/k−1 but is constant with respect to cluster size in model 2 (panel
C); quickly saturates with respect to cluster size to the cortical flow speed in model 3
(panel D); and slowly saturates with respect to cluster size to approximately 75% of
the cortical flow speed in model 4.

4 Discussion

In this study, we developed a model to study how PAR-3 protein clusters interact
with the flowing actin cortex in single-cell C. elegans embryos. This discrete, agent-
basedmodel (ABM) incorporates cluster size dynamics, cortex binding and unbinding
dynamics, aswell as a physics-basedmodel for the cluster’s interactionwith the cortical
flow. The purpose of this model is to use it as a platform to test different hypotheses
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A B C 

D E

Fig. 5 Theoretical predictions ofmean scalar projection for each cluster size, the fourmodels, and parameter
space.ADashed lines show how the predictedmean scalar projection values agree with the scalar projection
values obtained through MC sampling as in Fig. 4b. B–D Mean scalar projection values as a function of
cluster size and key model parameters. B Model 1 mean scalar projection is constant and exactly matches
the cortical flow speed. C Model 2 mean scalar projection does not depend on cluster size and increases
with k1/k−1. D Model 3 mean scalar projection depends nonlinearly on cluster size and k11 and rapidly

approaches the cortical flow speed for medium-sized clusters and intermediate values of k11 (k1/k−1 = 5 is
fixed). EModel 4 mean scalar projection depends nonlinearly on cluster size and viscosity µ; but remains
much smaller than the cortical flow speed unless the cluster size and drag are both large (Color figure online)

for how these protein clusters interact with the cortex, and how those interactions
influence their transport. Toward this end, we encoded four hypotheses for how the
clusters may interact with the flowing actin cortex and tested each model against
experimental observations. The models encoded were (1) that clusters are directly
coupled to the cortex and moved with its velocities; (2) that clusters can stochastically
bind and unbind from the cortex, independent of their size; (3) that clusters can bind and
unbind from the cortex in a size-dependent fashion; and (4) that the cluster experiences
a drag force from the flowing cluster.

The primary data that both motivated this study and which we use to test these
hypotheses is particle tracking data from Dickinson et al. (2017). There, the authors
quantify intensity of PAR-3 clusters (a proxy for cluster size), track their positions over
time, and calculate the Péclet number of clusters of different intensities (i.e., sizes).
Based on this data, we began this study with the broad hypothesis that clusters of
different sizes interact with the cortex in different ways, and that by comparing these
models to this size-dependent data we could elucidate the form of that cluster–cortex
interaction.

As a first step, we demonstrate that each model variant (encoding the four hypothe-
ses) could be calibrated with biophysically reasonable parameters to match the
size-dependent Péclet observations. On one hand, this calibration allowed us to restrict
the parameters of each model to biophysically relevant ranges. On the other, however,
it demonstrates that the Péclet number is an insufficient measure to distinguish these
different models. The essential reason for this is simple in retrospect. The Péclet num-
ber quantifies the relative importance of advection compared to diffusion in a system.
In these models, cluster size alters both advection (which we are interested in) and
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diffusion (which we are not). In the regime of behavior of this system, size-dependent
diffusion effects (i.e., larger clusters diffuse less) dominate the Péclet number’s size
dependence, making it unsuitable for our purpose.

In response to this observation, we sought to find a way to differentiate these
hypotheses based on the type of particle tracking data that is available. Our results
show that a “scalar projection” measure can distinguish between the four different
hypotheses. This scalar projection quantifies the level of advection of clusters of dif-
ferent sizes relative to the cortical flow. Each of these models produces a distinct
size-dependent scalar projection curve that match biological intuition. For this reason,
we suggest that particle tracking data could be analyzed in conjunction with particle
image velocimetry (to measure the cortical flow) to facilitate the calculation of scalar
projection.

This is of course not the only approach to differentiating these models. Techniques
to either directly or indirectly observe the cluster’s state (size and binding status)
from single-particle data (Robin et al. 2014; Mellnik et al. 2016; Kowalek et al. 2019;
Menssen and Mani 2019; Falcao and Coombs 2020; Du and Kou 2020) would be a
more direct way to test this. Experimental perturbations to cortical flow (Mittasch et al.
2018) may also be useful in distinguishing models. Alternatively, engineered clusters
could be used to study transport properties. Recent experimental work by Chang and
Dickinson (2021) took this approach. Their new data suggests that clusters of size 3
or larger indeed exhibit directed transport, that the transport of larger clusters is more
ballistic (as opposed to diffusive), and that the cluster diffusion constant decreases
with cluster size. Models 3 and 4 exhibit these basic characteristics (larger clusters
move more ballistically and with lower diffusion constant), yet do not replicate the
dramatic switch in cluster transport as the cluster size increases beyond 3 observed
by Chang and Dickinson (2021). This sharp-switch is outside the scope of the models
considered herein, and suggests the need for further investigation. Thus it remains
unclear whether these size-dependent transport effects result from mainly drag effects
or more direct binding to the flowing cortex.

We also developed new approximate analysis methods to facilitate the above
investigation. Full stochastic simulation of these models is relatively straightforward;
however, such simulations can be computationally slow and create sampling issues
since there are far fewer instances of large clusters in the model than smaller ones. In
particular, we found that long simulations were required to produce enough data to
construct reliable quantification for rarer, larger clusters, dramatically oversampling
data for smaller clusters in the process (note that Dickinson et al. (2017) found that
most PAR-3 clusters were small in experimental data). Since both Péclet number and
scalar projection quantification only use displacement data rather than positional data,
we analytically constructed approximate probability distributions for displacements of
clusters of each size for each model. This greatly simplifies simulation of Péclet num-
ber and scalar projections since we can sample displacements from the distribution for
each cluster size independently and construct these measures directly. This approach
also allowed us to formulate semi-analytical predictions for the size-dependent mean
scalar projection for each model, eliminating the need for simulations. This speeds
analysis of the effects of parameters on predictions for eachmodel and should simplify
any further analysis of these models based on new data or analysis in the future.
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While there are several other studies that seek to understand how the dynamics of
protein clustering in C. elegans and other systems affects their movement and biology
(Gambin et al. 2006; Knight et al. 2010; Dawes and Munro 2011; Yi et al. 2012;
Ziemba and Falke 2013; Sailer et al. 2015; Bergeler and Frey 2018; Kober et al. 2019;
Agudo-Canalejo et al. 2020; Liu et al. 2020) our study is the first to explicitlymodel the
transport of protein clusters during early embryogenesis in C. elegans. Nonetheless,
there are several limitations of our study. First, we did not model membrane binding
and unbinding in this study and chose to focus on cortex–cluster binding. This is due
to the lack of information about the biophysics at play. For example, it is not clear
weather clusters that unbind from the membrane remain visible in the imaging assay
or what happens to those clusters once disassociated. This could however readily be
added to the model in the future.

Second, we have made some necessary simplifications in our description of the
membrane, cortex, their interaction, and their interactions with proteins. First, we
have assumed that the cell membrane is stationary and is not coupled to nor flowing
with the cortex. Relaxing this assumption would in particular affect Model 4 since
it is based on the balance of drag forces between the cortex and membrane. Note
however that the recent observations by Chang and Dickinson (2021) suggest that
membrane-bound clusters of size less than three do not seem to flow, thus ruling
out the possibility of tight membrane-cortex interaction. Second, we have taken a
simplified view of how the monomers within an oligomer interact with the membrane
or cortex. In principle, each monomer may have the capacity to interact with one, the
other, or both. We have assumed here that one monomer serves as the anchor to the
membrane while the others interact with the cortex. The details on PAR-3 membrane
binding remain unclear. Monomers are largely depleted from the membrane during
this stage of development inC. elegans, yet clustering is sufficient to restoremembrane
association (Dickinson et al. 2017). However, monomeric PAR-3 mutants can stably
associate with the membrane in later stages of development (Dickinson et al. 2017)
and in Drosophila epidermal cells (McKinley et al. 2012). While these interactions
may be more complicated, relaxing these assumptions would lead to drastically more
and more complex models with no data to reasonably constrain them. A strength of
our modeling framework is that these factors could be readily incorporated. However
at this point, we are not aware of data or observations to constrain that complexity.

A third limitation is thatwehave ignored the position dynamics and cell geometry by
focusing only on the cluster displacements instead of the cluster’s movement through
the cell (Dickinson et al. 2017 quantified track lengths for clusters of various). A
third limitation is that there are many feedback loops between PAR-3 clustering and
other proteins which we have ignored. During the polarization of the embryo, PAR-
3 proteins promote local association of PAR-6/PKC-3 with active CDC-42 GTPase
(Kravtsova andDawes 2014; Sailer et al. 2015; Lang andMunro 2017; Seirin-Lee et al.
2020). This process may alter the transport of PAR-3 clusters as it binds and unbinds
with other proteins or modulates the local flow of the cortex through GTPase signaling
(which affects the cytoskeleton). More detailed models, constrained by experimental
data, could be used to address these limitations, but would stray from the main intent
to study cluster–cortex interactions.
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Overall, we developed a discrete, agent-based model to study how PAR-3 protein
clusters interact with the flowing actin cortex in the context or early embryogenesis and
used this model to test four biophysical hypotheses for how the clusters may interact
with the cortex. While we found that all models can agree with existing experimental
observations, we proposed an alternate metric for analysis that can distinguish the
hypotheses from sufficiently detailed single-particle tracking data. Our study presents
the first computational steps in unraveling how biophysical interactions between pro-
tein clusters and cortical actin flow coordinate cluster transport.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-022-00997-6.
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Supplemental Figure 1: Validation of ABM simulationwith sizeindependent diffusion. We simulated 1000
clusters without drift (v = 0, “ Drift”) and 1000 clusters with drift (v = 0.01, “+ Drift”) with D = 0.001.
A. Averaged meansquare displacement (MSD(τ) µm2) over all simulated clusters as a function of timelag
τ s (solid lines) agrees with the MSD expected from theory (dashed lines). B. Mean time in each cluster size
state obtained from ABM simulations agrees with that predicted by theory. C. Probability that a cluster is in
size n matches that predicted by theory for k+ = 0.05 and k− = 0.1.
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Supplemental Figure 2: Probability density distributions of the xcomponent of cluster displacements,
r1, obtained from the simulations of the agentbased model (ABM; histograms) match the kernel density
estimates of distributions obtained from MonteCarlo (MC) sampling (solid lines) from quasisteady distri
butions (dashed lines) across clusters of size n = 1, . . . 10 in Model 2 with parameters as in Figure 2.
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Supplemental Figure 3: Probability density distributions of the xcomponent of cluster displacements, r1,
obtained for Model 2, as in Supplemental Figure 2, except the distributions are split into bound (orange)
and unbound (blue) states. Distributions obtained from ABM simulations (histograms), MC sampling (solid
lines), and theory (dashed lines) match with each other.
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Supplemental Figure 4: Probability density distributions of the ycomponent of displacements obtained
for Model 2, as in Supplemental Figure 2. Distributions obtained from ABM simulations (histograms), MC
sampling (solid lines), and theory (dashed lines) match with each other.
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Supplemental Figure 5: Probability density distributions of the ycomponent of displacements obtained for
Model 2, as in Supplemental Figure 5, except the distributions are split into (bound) orange and unbound
(blue) states. Distributions obtained from ABM simulations (histograms), MC sampling (solid lines), and
theory (dashed lines) match with each other.
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Supplemental Figure 7: Model 1 parameter sweep. We sampled 500 displacements for each cluster size
n = 1, . . . , 10 from N = 100 cells with the parameters indicated as the title of each panel, and show the
mean Péclet number as a function of cluster size for each parameter set (error bars show standard error of
the mean). Increasing the viscosity (moving down panels) reduces the effect of diffusion, thus increasing
the Péclet number. Increasing the noise level (moving right panels) increases the effect of diffusion, thus
decreasing the Péclet number. Note that all panels share the same yaxis thus some data is not shown (e.g.,
for large µ and small σ).
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(error bars show standard error of the mean). Increasing k1 (relative to k−1) increases the time spent bound
to the flowing cortex, thus increasing the Péclet number.
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Supplemental Figure 9: Model 3 parameter sweep. We sampled 500 displacements for each cluster size
n = 1, . . . , 10 from N = 100 cells with the parameters indicated as the title of each panel with k−1 = 1,
µ = 0.1, and σ = 0.01. We show the mean Péclet number as a function of cluster size for each parameter set
(error bars show standard error of the mean). Increasing k01 (relative to k−1) increases the time spent bound
to the flowing cortex, thus increasing the Péclet number. Increasing k11 also increases the Péclet number
provided that k01 is small (relative to k−1).
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Supplemental Figure 10: Model 4 parameter sweep. We sampled 500 displacements for each cluster size
n = 1, . . . , 10 fromN = 100 cells with the parameters indicated as the title of each panel with σ = 0.01. We
show the mean Péclet number as a function of cluster size for each parameter set (error bars show standard
error of the mean). Increasing µ increases the the Péclet number.
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Supplemental Figure 11: Models with sizeindependent diffusion. The diffusion coefficient does not de
pend on cluster size (here Dn = D3 for all n). Black points show mean Péclet numbers estimated from
experimental observations of cluster transport from Figure 6H of Dickinson et al. (2017), while boxplots
illustrate simulated Péclet number distributions obtained fromMC sampling when cluster displacements are
grouped into four size categories. Parameters are exactly as in Figure 3.
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